A comparative study of qualitative and quantitative dynamic models of biological regulatory networks View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-12

AUTHORS

Assieh Saadatpour, Réka Albert

ABSTRACT

Mathematical modeling of biological regulatory networks provides valuable insights into the structural and dynamical properties of the underlying systems. While dynamic models based on differential equations provide quantitative information on the biological systems, qualitative models that rely on the logical interactions among the components provide coarse-grained descriptions useful for systems whose mechanistic underpinnings remain incompletely understood. The middle ground class of piecewise affine differential equation models was proven informative for systems with partial knowledge of kinetic parameters. In this work we provide a comparison of the dynamic characteristics of these three approaches applied on several biological regulatory network motifs. Specifically, we compare the attractors and state transitions in asynchronous Boolean, piecewise affine and Hill-type continuous models. Our study shows that while the fixed points of asynchronous Boolean models are observed in continuous Hill-type and piecewise affine models, these models may exhibit different attractors under certain conditions. Overall, qualitative models are suitable for systems with limited knowledge of quantitative information. On the other hand, when practical, using quantitative models can provide detailed information about additional real-valued attractors not present in the qualitative models. More... »

PAGES

5

References to SciGraph publications

  • 2000-01. Construction of a genetic toggle switch in Escherichia coli in NATURE
  • 2007-06. Network motifs: theory and experimental approaches in NATURE REVIEWS GENETICS
  • 2010-12. Modeling cardiac β-adrenergic signaling with normalized-Hill differential equations: comparison with a biochemical model in BMC SYSTEMS BIOLOGY
  • 1981. On the Relation Between the Logical Structure of Systems and Their Ability to Generate Multiple Steady States or Sustained Oscillations in NUMERICAL METHODS IN THE STUDY OF CRITICAL PHENOMENA
  • 1978-08. Stable oscillations in mathematical models of biological control systems in JOURNAL OF MATHEMATICAL BIOLOGY
  • 2009-12. Reconstruction and logical modeling of glucose repression signaling pathways in Saccharomyces cerevisiae in BMC SYSTEMS BIOLOGY
  • 2009-12. The smallest chemical reaction system with bistability in BMC SYSTEMS BIOLOGY
  • 2006-01. Piecewise-linear Models of Genetic Regulatory Networks: Equilibria and their Stability in JOURNAL OF MATHEMATICAL BIOLOGY
  • 1997-06. Robustness in simple biochemical networks in NATURE
  • 2004-03. Qualitative simulation of the initiation of sporulation in Bacillus subtilis in BULLETIN OF MATHEMATICAL BIOLOGY
  • 2013-05. Synthetic circuits integrating logic and memory in living cells in NATURE BIOTECHNOLOGY
  • 1988. Differential Equations with Discontinuous Righthand Sides in NONE
  • 2009-12. Transforming Boolean models to continuous models: methodology and application to T-cell receptor signaling in BMC SYSTEMS BIOLOGY
  • 2014-01. Entering the era of single-cell transcriptomics in biology and medicine in NATURE METHODS
  • 2000-11. Feedback control of intercellular signalling in development in NATURE
  • 2000-07. The segment polarity network is a robust developmental module in NATURE
  • 2004-03. Qualitative simulation of genetic regulatory networks using piecewise-linear models in BULLETIN OF MATHEMATICAL BIOLOGY
  • 2010-09. Comparing Boolean and Piecewise Affine Differential Models for Genetic Networks in ACTA BIOTHEORETICA
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1140/epjnbp/s40366-016-0031-y

    DOI

    http://dx.doi.org/10.1140/epjnbp/s40366-016-0031-y

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1030215307


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Applied Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Harvard University", 
              "id": "https://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Department of Physics, The Pennsylvania State University, University Park, PA, USA", 
                "Present address: Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard T. H. Chan School of Public Health, Boston, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Saadatpour", 
            "givenName": "Assieh", 
            "id": "sg:person.01040230646.90", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01040230646.90"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Pennsylvania State University", 
              "id": "https://www.grid.ac/institutes/grid.29857.31", 
              "name": [
                "Department of Physics, The Pennsylvania State University, University Park, PA, USA", 
                "Department of Biology, The Pennsylvania State University, University Park, PA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Albert", 
            "givenName": "R\u00e9ka", 
            "id": "sg:person.01017036620.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017036620.03"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1098/rsif.2008.0363", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001387255"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1075090", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001953109"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0806447105", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002068353"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1074/jbc.m404893200", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002757475"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35002131", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002786107", 
              "https://doi.org/10.1038/35002131"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35002131", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002786107", 
              "https://doi.org/10.1038/35002131"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/43199", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003059937", 
              "https://doi.org/10.1038/43199"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/43199", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003059937", 
              "https://doi.org/10.1038/43199"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1003110623", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-015-7793-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003110623", 
              "https://doi.org/10.1007/978-94-015-7793-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-015-7793-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003110623", 
              "https://doi.org/10.1007/978-94-015-7793-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pcbi.1000936", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003246483"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1752-0509-3-90", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003718961", 
              "https://doi.org/10.1186/1752-0509-3-90"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jtbi.2011.08.042", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003988435"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35042500", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004129025", 
              "https://doi.org/10.1038/35042500"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35042500", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004129025", 
              "https://doi.org/10.1038/35042500"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1752-0509-3-98", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005724038", 
              "https://doi.org/10.1186/1752-0509-3-98"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/1468936021000041681", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005775915"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1242/dev.02331", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006417360"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.tig.2015.07.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007205768"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1529/biophysj.107.125021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007341170"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-5193(73)90247-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011877812"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg2102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013630449", 
              "https://doi.org/10.1038/nrg2102"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10441-010-9097-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016698031", 
              "https://doi.org/10.1007/s10441-010-9097-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1071914", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018025859"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.dam.2007.04.019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018098829"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pcbi.1002267", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018228391"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1752-0509-3-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018921552", 
              "https://doi.org/10.1186/1752-0509-3-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0022-5193(03)00035-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020833072"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0022-5193(03)00035-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020833072"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0022-5193(03)00035-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020833072"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0022-5193(03)00035-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020833072"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btf851", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021769651"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.197590.115", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022993072"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-5193(69)90015-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023348122"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1098/rsif.2008.0132.focus", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025141340"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.280.5365.895", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026189374"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-81703-8_24", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026370106", 
              "https://doi.org/10.1007/978-3-642-81703-8_24"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02547797", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026817305", 
              "https://doi.org/10.1007/bf02547797"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02547797", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026817305", 
              "https://doi.org/10.1007/bf02547797"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.aam.2007.11.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029797351"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ymeth.2012.10.012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030629011"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ymeth.2012.10.012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030629011"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1038/msb.2008.21", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031682242"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1038/msb.2008.21", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031682242"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1016/j.bulm.2003.08.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032483124", 
              "https://doi.org/10.1016/j.bulm.2003.08.009"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1634/theoncologist.11-3-263", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032524731"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.298.5594.824", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033238539"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.4809777", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033693703"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pcbi.0030163", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034464810"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.2764", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034636954", 
              "https://doi.org/10.1038/nmeth.2764"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1752-0509-4-157", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038607979", 
              "https://doi.org/10.1186/1752-0509-4-157"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jtbi.2008.07.020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039174395"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.2510", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039823135", 
              "https://doi.org/10.1038/nbt.2510"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/00207720903144552", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041069239"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1016/j.bulm.2003.08.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041437663", 
              "https://doi.org/10.1016/j.bulm.2003.08.010"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00285-005-0338-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042803679", 
              "https://doi.org/10.1007/s00285-005-0338-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00285-005-0338-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042803679", 
              "https://doi.org/10.1007/s00285-005-0338-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35018085", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042996538", 
              "https://doi.org/10.1038/35018085"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35018085", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042996538", 
              "https://doi.org/10.1038/35018085"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1232758", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043325726"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ejor.2014.01.054", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045867574"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/15.7.593", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046084627"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1098/rsob.130031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047264790"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1478-3975/9/5/055001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048270157"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.tcs.2010.10.021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048465460"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0705088105", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049279196"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1159/000076100", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049817752"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/jtbi.2002.2544", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050122289"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.88.16.7328", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050582702"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pcbi.1004193", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052196104"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/bi902202q", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052982050"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/bi902202q", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052982050"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1049/ip-syb:20050079", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056860261"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1350439", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057697541"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.431518", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058009550"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.4810922", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058077579"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/82.996055", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061238986"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tcbb.2007.70254", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061540596"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/13090537x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062870357"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s0219525905000518", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062998292"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2174/1875036201105010016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069237726"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/0471220639", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098660975"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/0471220639", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098660975"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016-12", 
        "datePublishedReg": "2016-12-01", 
        "description": "Mathematical modeling of biological regulatory networks provides valuable insights into the structural and dynamical properties of the underlying systems. While dynamic models based on differential equations provide quantitative information on the biological systems, qualitative models that rely on the logical interactions among the components provide coarse-grained descriptions useful for systems whose mechanistic underpinnings remain incompletely understood. The middle ground class of piecewise affine differential equation models was proven informative for systems with partial knowledge of kinetic parameters. In this work we provide a comparison of the dynamic characteristics of these three approaches applied on several biological regulatory network motifs. Specifically, we compare the attractors and state transitions in asynchronous Boolean, piecewise affine and Hill-type continuous models. Our study shows that while the fixed points of asynchronous Boolean models are observed in continuous Hill-type and piecewise affine models, these models may exhibit different attractors under certain conditions. Overall, qualitative models are suitable for systems with limited knowledge of quantitative information. On the other hand, when practical, using quantitative models can provide detailed information about additional real-valued attractors not present in the qualitative models.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1140/epjnbp/s40366-016-0031-y", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3135583", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3137442", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1295581", 
            "issn": [
              "2195-0008"
            ], 
            "name": "EPJ Nonlinear Biomedical Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "4"
          }
        ], 
        "name": "A comparative study of qualitative and quantitative dynamic models of biological regulatory networks", 
        "pagination": "5", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "8ff11fd806f58434805466f4fa5e2b0a6f23eeab6e83f2cdc7b741de2bf3901e"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1140/epjnbp/s40366-016-0031-y"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1030215307"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1140/epjnbp/s40366-016-0031-y", 
          "https://app.dimensions.ai/details/publication/pub.1030215307"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:42", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70058_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1140%2Fepjnbp%2Fs40366-016-0031-y"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epjnbp/s40366-016-0031-y'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epjnbp/s40366-016-0031-y'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epjnbp/s40366-016-0031-y'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epjnbp/s40366-016-0031-y'


     

    This table displays all metadata directly associated to this object as RDF triples.

    303 TRIPLES      21 PREDICATES      97 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1140/epjnbp/s40366-016-0031-y schema:about anzsrc-for:01
    2 anzsrc-for:0102
    3 schema:author Nb44a5f02189a4fbc83b4d03dff4653e5
    4 schema:citation sg:pub.10.1007/978-3-642-81703-8_24
    5 sg:pub.10.1007/978-94-015-7793-9
    6 sg:pub.10.1007/bf02547797
    7 sg:pub.10.1007/s00285-005-0338-2
    8 sg:pub.10.1007/s10441-010-9097-6
    9 sg:pub.10.1016/j.bulm.2003.08.009
    10 sg:pub.10.1016/j.bulm.2003.08.010
    11 sg:pub.10.1038/35002131
    12 sg:pub.10.1038/35018085
    13 sg:pub.10.1038/35042500
    14 sg:pub.10.1038/43199
    15 sg:pub.10.1038/nbt.2510
    16 sg:pub.10.1038/nmeth.2764
    17 sg:pub.10.1038/nrg2102
    18 sg:pub.10.1186/1752-0509-3-7
    19 sg:pub.10.1186/1752-0509-3-90
    20 sg:pub.10.1186/1752-0509-3-98
    21 sg:pub.10.1186/1752-0509-4-157
    22 https://app.dimensions.ai/details/publication/pub.1003110623
    23 https://doi.org/10.1002/0471220639
    24 https://doi.org/10.1006/jtbi.2002.2544
    25 https://doi.org/10.1016/0022-5193(69)90015-0
    26 https://doi.org/10.1016/0022-5193(73)90247-6
    27 https://doi.org/10.1016/j.aam.2007.11.003
    28 https://doi.org/10.1016/j.dam.2007.04.019
    29 https://doi.org/10.1016/j.ejor.2014.01.054
    30 https://doi.org/10.1016/j.jtbi.2008.07.020
    31 https://doi.org/10.1016/j.jtbi.2011.08.042
    32 https://doi.org/10.1016/j.tcs.2010.10.021
    33 https://doi.org/10.1016/j.tig.2015.07.003
    34 https://doi.org/10.1016/j.ymeth.2012.10.012
    35 https://doi.org/10.1016/s0022-5193(03)00035-3
    36 https://doi.org/10.1021/bi902202q
    37 https://doi.org/10.1038/msb.2008.21
    38 https://doi.org/10.1049/ip-syb:20050079
    39 https://doi.org/10.1063/1.1350439
    40 https://doi.org/10.1063/1.431518
    41 https://doi.org/10.1063/1.4809777
    42 https://doi.org/10.1063/1.4810922
    43 https://doi.org/10.1073/pnas.0705088105
    44 https://doi.org/10.1073/pnas.0806447105
    45 https://doi.org/10.1073/pnas.88.16.7328
    46 https://doi.org/10.1074/jbc.m404893200
    47 https://doi.org/10.1080/00207720903144552
    48 https://doi.org/10.1080/1468936021000041681
    49 https://doi.org/10.1088/1478-3975/9/5/055001
    50 https://doi.org/10.1093/bioinformatics/15.7.593
    51 https://doi.org/10.1093/bioinformatics/btf851
    52 https://doi.org/10.1098/rsif.2008.0132.focus
    53 https://doi.org/10.1098/rsif.2008.0363
    54 https://doi.org/10.1098/rsob.130031
    55 https://doi.org/10.1101/gr.197590.115
    56 https://doi.org/10.1109/82.996055
    57 https://doi.org/10.1109/tcbb.2007.70254
    58 https://doi.org/10.1126/science.1071914
    59 https://doi.org/10.1126/science.1075090
    60 https://doi.org/10.1126/science.1232758
    61 https://doi.org/10.1126/science.280.5365.895
    62 https://doi.org/10.1126/science.298.5594.824
    63 https://doi.org/10.1137/13090537x
    64 https://doi.org/10.1142/s0219525905000518
    65 https://doi.org/10.1159/000076100
    66 https://doi.org/10.1242/dev.02331
    67 https://doi.org/10.1371/journal.pcbi.0030163
    68 https://doi.org/10.1371/journal.pcbi.1000936
    69 https://doi.org/10.1371/journal.pcbi.1002267
    70 https://doi.org/10.1371/journal.pcbi.1004193
    71 https://doi.org/10.1529/biophysj.107.125021
    72 https://doi.org/10.1634/theoncologist.11-3-263
    73 https://doi.org/10.2174/1875036201105010016
    74 schema:datePublished 2016-12
    75 schema:datePublishedReg 2016-12-01
    76 schema:description Mathematical modeling of biological regulatory networks provides valuable insights into the structural and dynamical properties of the underlying systems. While dynamic models based on differential equations provide quantitative information on the biological systems, qualitative models that rely on the logical interactions among the components provide coarse-grained descriptions useful for systems whose mechanistic underpinnings remain incompletely understood. The middle ground class of piecewise affine differential equation models was proven informative for systems with partial knowledge of kinetic parameters. In this work we provide a comparison of the dynamic characteristics of these three approaches applied on several biological regulatory network motifs. Specifically, we compare the attractors and state transitions in asynchronous Boolean, piecewise affine and Hill-type continuous models. Our study shows that while the fixed points of asynchronous Boolean models are observed in continuous Hill-type and piecewise affine models, these models may exhibit different attractors under certain conditions. Overall, qualitative models are suitable for systems with limited knowledge of quantitative information. On the other hand, when practical, using quantitative models can provide detailed information about additional real-valued attractors not present in the qualitative models.
    77 schema:genre research_article
    78 schema:inLanguage en
    79 schema:isAccessibleForFree true
    80 schema:isPartOf N6bb57cdb8e494cb1964565376eaa93ac
    81 Naee60a9c127543cf8bbc1ead62325e05
    82 sg:journal.1295581
    83 schema:name A comparative study of qualitative and quantitative dynamic models of biological regulatory networks
    84 schema:pagination 5
    85 schema:productId N22a8dc5244e845f6809da78d6f7e2953
    86 N7262468663b440ad809d8e3bd99ea861
    87 Nfd0f3d94918948e69f8f2059ba97594a
    88 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030215307
    89 https://doi.org/10.1140/epjnbp/s40366-016-0031-y
    90 schema:sdDatePublished 2019-04-11T12:42
    91 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    92 schema:sdPublisher N3c24e020eec94b078f73463f8cb94204
    93 schema:url https://link.springer.com/10.1140%2Fepjnbp%2Fs40366-016-0031-y
    94 sgo:license sg:explorer/license/
    95 sgo:sdDataset articles
    96 rdf:type schema:ScholarlyArticle
    97 N22a8dc5244e845f6809da78d6f7e2953 schema:name doi
    98 schema:value 10.1140/epjnbp/s40366-016-0031-y
    99 rdf:type schema:PropertyValue
    100 N3c24e020eec94b078f73463f8cb94204 schema:name Springer Nature - SN SciGraph project
    101 rdf:type schema:Organization
    102 N6bb57cdb8e494cb1964565376eaa93ac schema:volumeNumber 4
    103 rdf:type schema:PublicationVolume
    104 N7262468663b440ad809d8e3bd99ea861 schema:name dimensions_id
    105 schema:value pub.1030215307
    106 rdf:type schema:PropertyValue
    107 N85c7830467a24bf2953ddfbba57c3f1b rdf:first sg:person.01017036620.03
    108 rdf:rest rdf:nil
    109 Naee60a9c127543cf8bbc1ead62325e05 schema:issueNumber 1
    110 rdf:type schema:PublicationIssue
    111 Nb44a5f02189a4fbc83b4d03dff4653e5 rdf:first sg:person.01040230646.90
    112 rdf:rest N85c7830467a24bf2953ddfbba57c3f1b
    113 Nfd0f3d94918948e69f8f2059ba97594a schema:name readcube_id
    114 schema:value 8ff11fd806f58434805466f4fa5e2b0a6f23eeab6e83f2cdc7b741de2bf3901e
    115 rdf:type schema:PropertyValue
    116 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    117 schema:name Mathematical Sciences
    118 rdf:type schema:DefinedTerm
    119 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
    120 schema:name Applied Mathematics
    121 rdf:type schema:DefinedTerm
    122 sg:grant.3135583 http://pending.schema.org/fundedItem sg:pub.10.1140/epjnbp/s40366-016-0031-y
    123 rdf:type schema:MonetaryGrant
    124 sg:grant.3137442 http://pending.schema.org/fundedItem sg:pub.10.1140/epjnbp/s40366-016-0031-y
    125 rdf:type schema:MonetaryGrant
    126 sg:journal.1295581 schema:issn 2195-0008
    127 schema:name EPJ Nonlinear Biomedical Physics
    128 rdf:type schema:Periodical
    129 sg:person.01017036620.03 schema:affiliation https://www.grid.ac/institutes/grid.29857.31
    130 schema:familyName Albert
    131 schema:givenName Réka
    132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01017036620.03
    133 rdf:type schema:Person
    134 sg:person.01040230646.90 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
    135 schema:familyName Saadatpour
    136 schema:givenName Assieh
    137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01040230646.90
    138 rdf:type schema:Person
    139 sg:pub.10.1007/978-3-642-81703-8_24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026370106
    140 https://doi.org/10.1007/978-3-642-81703-8_24
    141 rdf:type schema:CreativeWork
    142 sg:pub.10.1007/978-94-015-7793-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003110623
    143 https://doi.org/10.1007/978-94-015-7793-9
    144 rdf:type schema:CreativeWork
    145 sg:pub.10.1007/bf02547797 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026817305
    146 https://doi.org/10.1007/bf02547797
    147 rdf:type schema:CreativeWork
    148 sg:pub.10.1007/s00285-005-0338-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042803679
    149 https://doi.org/10.1007/s00285-005-0338-2
    150 rdf:type schema:CreativeWork
    151 sg:pub.10.1007/s10441-010-9097-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016698031
    152 https://doi.org/10.1007/s10441-010-9097-6
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1016/j.bulm.2003.08.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032483124
    155 https://doi.org/10.1016/j.bulm.2003.08.009
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1016/j.bulm.2003.08.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041437663
    158 https://doi.org/10.1016/j.bulm.2003.08.010
    159 rdf:type schema:CreativeWork
    160 sg:pub.10.1038/35002131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002786107
    161 https://doi.org/10.1038/35002131
    162 rdf:type schema:CreativeWork
    163 sg:pub.10.1038/35018085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042996538
    164 https://doi.org/10.1038/35018085
    165 rdf:type schema:CreativeWork
    166 sg:pub.10.1038/35042500 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004129025
    167 https://doi.org/10.1038/35042500
    168 rdf:type schema:CreativeWork
    169 sg:pub.10.1038/43199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003059937
    170 https://doi.org/10.1038/43199
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1038/nbt.2510 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039823135
    173 https://doi.org/10.1038/nbt.2510
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1038/nmeth.2764 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034636954
    176 https://doi.org/10.1038/nmeth.2764
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1038/nrg2102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013630449
    179 https://doi.org/10.1038/nrg2102
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1186/1752-0509-3-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018921552
    182 https://doi.org/10.1186/1752-0509-3-7
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1186/1752-0509-3-90 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003718961
    185 https://doi.org/10.1186/1752-0509-3-90
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1186/1752-0509-3-98 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005724038
    188 https://doi.org/10.1186/1752-0509-3-98
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1186/1752-0509-4-157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038607979
    191 https://doi.org/10.1186/1752-0509-4-157
    192 rdf:type schema:CreativeWork
    193 https://app.dimensions.ai/details/publication/pub.1003110623 schema:CreativeWork
    194 https://doi.org/10.1002/0471220639 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098660975
    195 rdf:type schema:CreativeWork
    196 https://doi.org/10.1006/jtbi.2002.2544 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050122289
    197 rdf:type schema:CreativeWork
    198 https://doi.org/10.1016/0022-5193(69)90015-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023348122
    199 rdf:type schema:CreativeWork
    200 https://doi.org/10.1016/0022-5193(73)90247-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011877812
    201 rdf:type schema:CreativeWork
    202 https://doi.org/10.1016/j.aam.2007.11.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029797351
    203 rdf:type schema:CreativeWork
    204 https://doi.org/10.1016/j.dam.2007.04.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018098829
    205 rdf:type schema:CreativeWork
    206 https://doi.org/10.1016/j.ejor.2014.01.054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045867574
    207 rdf:type schema:CreativeWork
    208 https://doi.org/10.1016/j.jtbi.2008.07.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039174395
    209 rdf:type schema:CreativeWork
    210 https://doi.org/10.1016/j.jtbi.2011.08.042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003988435
    211 rdf:type schema:CreativeWork
    212 https://doi.org/10.1016/j.tcs.2010.10.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048465460
    213 rdf:type schema:CreativeWork
    214 https://doi.org/10.1016/j.tig.2015.07.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007205768
    215 rdf:type schema:CreativeWork
    216 https://doi.org/10.1016/j.ymeth.2012.10.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030629011
    217 rdf:type schema:CreativeWork
    218 https://doi.org/10.1016/s0022-5193(03)00035-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020833072
    219 rdf:type schema:CreativeWork
    220 https://doi.org/10.1021/bi902202q schema:sameAs https://app.dimensions.ai/details/publication/pub.1052982050
    221 rdf:type schema:CreativeWork
    222 https://doi.org/10.1038/msb.2008.21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031682242
    223 rdf:type schema:CreativeWork
    224 https://doi.org/10.1049/ip-syb:20050079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056860261
    225 rdf:type schema:CreativeWork
    226 https://doi.org/10.1063/1.1350439 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057697541
    227 rdf:type schema:CreativeWork
    228 https://doi.org/10.1063/1.431518 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058009550
    229 rdf:type schema:CreativeWork
    230 https://doi.org/10.1063/1.4809777 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033693703
    231 rdf:type schema:CreativeWork
    232 https://doi.org/10.1063/1.4810922 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058077579
    233 rdf:type schema:CreativeWork
    234 https://doi.org/10.1073/pnas.0705088105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049279196
    235 rdf:type schema:CreativeWork
    236 https://doi.org/10.1073/pnas.0806447105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002068353
    237 rdf:type schema:CreativeWork
    238 https://doi.org/10.1073/pnas.88.16.7328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050582702
    239 rdf:type schema:CreativeWork
    240 https://doi.org/10.1074/jbc.m404893200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002757475
    241 rdf:type schema:CreativeWork
    242 https://doi.org/10.1080/00207720903144552 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041069239
    243 rdf:type schema:CreativeWork
    244 https://doi.org/10.1080/1468936021000041681 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005775915
    245 rdf:type schema:CreativeWork
    246 https://doi.org/10.1088/1478-3975/9/5/055001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048270157
    247 rdf:type schema:CreativeWork
    248 https://doi.org/10.1093/bioinformatics/15.7.593 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046084627
    249 rdf:type schema:CreativeWork
    250 https://doi.org/10.1093/bioinformatics/btf851 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021769651
    251 rdf:type schema:CreativeWork
    252 https://doi.org/10.1098/rsif.2008.0132.focus schema:sameAs https://app.dimensions.ai/details/publication/pub.1025141340
    253 rdf:type schema:CreativeWork
    254 https://doi.org/10.1098/rsif.2008.0363 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001387255
    255 rdf:type schema:CreativeWork
    256 https://doi.org/10.1098/rsob.130031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047264790
    257 rdf:type schema:CreativeWork
    258 https://doi.org/10.1101/gr.197590.115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022993072
    259 rdf:type schema:CreativeWork
    260 https://doi.org/10.1109/82.996055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061238986
    261 rdf:type schema:CreativeWork
    262 https://doi.org/10.1109/tcbb.2007.70254 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061540596
    263 rdf:type schema:CreativeWork
    264 https://doi.org/10.1126/science.1071914 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018025859
    265 rdf:type schema:CreativeWork
    266 https://doi.org/10.1126/science.1075090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001953109
    267 rdf:type schema:CreativeWork
    268 https://doi.org/10.1126/science.1232758 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043325726
    269 rdf:type schema:CreativeWork
    270 https://doi.org/10.1126/science.280.5365.895 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026189374
    271 rdf:type schema:CreativeWork
    272 https://doi.org/10.1126/science.298.5594.824 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033238539
    273 rdf:type schema:CreativeWork
    274 https://doi.org/10.1137/13090537x schema:sameAs https://app.dimensions.ai/details/publication/pub.1062870357
    275 rdf:type schema:CreativeWork
    276 https://doi.org/10.1142/s0219525905000518 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062998292
    277 rdf:type schema:CreativeWork
    278 https://doi.org/10.1159/000076100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049817752
    279 rdf:type schema:CreativeWork
    280 https://doi.org/10.1242/dev.02331 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006417360
    281 rdf:type schema:CreativeWork
    282 https://doi.org/10.1371/journal.pcbi.0030163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034464810
    283 rdf:type schema:CreativeWork
    284 https://doi.org/10.1371/journal.pcbi.1000936 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003246483
    285 rdf:type schema:CreativeWork
    286 https://doi.org/10.1371/journal.pcbi.1002267 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018228391
    287 rdf:type schema:CreativeWork
    288 https://doi.org/10.1371/journal.pcbi.1004193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052196104
    289 rdf:type schema:CreativeWork
    290 https://doi.org/10.1529/biophysj.107.125021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007341170
    291 rdf:type schema:CreativeWork
    292 https://doi.org/10.1634/theoncologist.11-3-263 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032524731
    293 rdf:type schema:CreativeWork
    294 https://doi.org/10.2174/1875036201105010016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069237726
    295 rdf:type schema:CreativeWork
    296 https://www.grid.ac/institutes/grid.29857.31 schema:alternateName Pennsylvania State University
    297 schema:name Department of Biology, The Pennsylvania State University, University Park, PA, USA
    298 Department of Physics, The Pennsylvania State University, University Park, PA, USA
    299 rdf:type schema:Organization
    300 https://www.grid.ac/institutes/grid.38142.3c schema:alternateName Harvard University
    301 schema:name Department of Physics, The Pennsylvania State University, University Park, PA, USA
    302 Present address: Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard T. H. Chan School of Public Health, Boston, MA, USA
    303 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...