The effect of model rescaling and normalization on sensitivity analysis on an example of a MAPK pathway model View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-12

AUTHORS

Jakob Kirch, Caterina Thomaseth, Antje Jensch, Nicole E. Radde

ABSTRACT

The description of intracellular processes based on chemical reaction kinetics has become a standard approach in the last decades, and parameter estimation poses several challenges. Sensitivity analysis is a powerful tool in model development that can aid model calibration in various ways. Results can for example be used to simplify the model by elimination or fixation of parameters that have a negligible influence on relevant model outputs. However, models are usually subject to rescaling and normalization to reference experiments, which changes the variance of the output. Thus, the results of the sensitivity analysis may change depending on the choice of these rescaling factors and reference experiments. Although it might intuitively be clear, this fact has not been addressed in the literature so far. In this study we investigate the effect of model rescaling and additional normalization to a reference experiment on the outcome of two different sensitivity analyses. Results are exemplified on a model for the MAPK pathway module in PC-12 cell lines. For this purpose we apply local sensitivity analysis and a global variance-based method based on Sobol sensitivity coefficients, and compare the results for differently scaled and normalized model versions. Results indicate that both sensitivity analyses are invariant under simple rescaling of variables and parameters with constant factors, provided that sensitivity coefficients are normalized and that the parameter space is appropriately chosen for Sobol’s method. By contrast, normalization to a reference experiment that also depends on parameters has a large impact on the results of any sensitivity analysis, and in particular complicates the interpretation. This work shows that, in order to perform sensitivity analysis, it is necessary to take into account the dependency on parameters of the reference condition when working with normalized model versions. More... »

PAGES

3

Journal

TITLE

EPJ Nonlinear Biomedical Physics

ISSUE

1

VOLUME

4

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1140/epjnbp/s40366-016-0030-z

DOI

http://dx.doi.org/10.1140/epjnbp/s40366-016-0030-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1006110438


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1402", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Economics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/14", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Economics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Stuttgart", 
          "id": "https://www.grid.ac/institutes/grid.5719.a", 
          "name": [
            "Institute for Systems Theory and Automatic Control, University of Stuttgart, Pfaffenwaldring 9, 70569, Stuttgart, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kirch", 
        "givenName": "Jakob", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Stuttgart", 
          "id": "https://www.grid.ac/institutes/grid.5719.a", 
          "name": [
            "Institute for Systems Theory and Automatic Control, University of Stuttgart, Pfaffenwaldring 9, 70569, Stuttgart, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thomaseth", 
        "givenName": "Caterina", 
        "id": "sg:person.0757556031.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0757556031.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Stuttgart", 
          "id": "https://www.grid.ac/institutes/grid.5719.a", 
          "name": [
            "Institute for Systems Theory and Automatic Control, University of Stuttgart, Pfaffenwaldring 9, 70569, Stuttgart, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jensch", 
        "givenName": "Antje", 
        "id": "sg:person.011354611403.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011354611403.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Stuttgart", 
          "id": "https://www.grid.ac/institutes/grid.5719.a", 
          "name": [
            "Institute for Systems Theory and Automatic Control, University of Stuttgart, Pfaffenwaldring 9, 70569, Stuttgart, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Radde", 
        "givenName": "Nicole E.", 
        "id": "sg:person.01252310765.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01252310765.04"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.3389/fimmu.2012.00062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000123716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/psp4.6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003957205"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1432-1327.2000.01197.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004927460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btm397", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006119407"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-11-202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011903723", 
          "https://doi.org/10.1186/1471-2105-11-202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-11-202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011903723", 
          "https://doi.org/10.1186/1471-2105-11-202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0079244", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015881429"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0107165", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018867808"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ifacol.2016.12.103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023674191"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0087293", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027042552"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cpc.2009.09.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030703354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncb1543", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030798217", 
          "https://doi.org/10.1038/ncb1543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2014/361590", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035197196"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.febslet.2005.02.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037612495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-4754(00)00270-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042923152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrm1743", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047623240", 
          "https://doi.org/10.1038/nrm1743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrm1743", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047623240", 
          "https://doi.org/10.1038/nrm1743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrm1743", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047623240", 
          "https://doi.org/10.1038/nrm1743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ie900139x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055644132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ie900139x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055644132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/iet-syb.2011.0015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056839009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/ip-syb:20050088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056860265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/biomet/56.3.635", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059417857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0218339098000054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062974518"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18637/jss.v016.i04", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068672248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12918-017-0392-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074209340", 
          "https://doi.org/10.1186/s12918-017-0392-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12918-017-0392-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074209340", 
          "https://doi.org/10.1186/s12918-017-0392-6"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-12", 
    "datePublishedReg": "2016-12-01", 
    "description": "The description of intracellular processes based on chemical reaction kinetics has become a standard approach in the last decades, and parameter estimation poses several challenges. Sensitivity analysis is a powerful tool in model development that can aid model calibration in various ways. Results can for example be used to simplify the model by elimination or fixation of parameters that have a negligible influence on relevant model outputs. However, models are usually subject to rescaling and normalization to reference experiments, which changes the variance of the output. Thus, the results of the sensitivity analysis may change depending on the choice of these rescaling factors and reference experiments. Although it might intuitively be clear, this fact has not been addressed in the literature so far. In this study we investigate the effect of model rescaling and additional normalization to a reference experiment on the outcome of two different sensitivity analyses. Results are exemplified on a model for the MAPK pathway module in PC-12 cell lines. For this purpose we apply local sensitivity analysis and a global variance-based method based on Sobol sensitivity coefficients, and compare the results for differently scaled and normalized model versions. Results indicate that both sensitivity analyses are invariant under simple rescaling of variables and parameters with constant factors, provided that sensitivity coefficients are normalized and that the parameter space is appropriately chosen for Sobol\u2019s method. By contrast, normalization to a reference experiment that also depends on parameters has a large impact on the results of any sensitivity analysis, and in particular complicates the interpretation. This work shows that, in order to perform sensitivity analysis, it is necessary to take into account the dependency on parameters of the reference condition when working with normalized model versions.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1140/epjnbp/s40366-016-0030-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1295581", 
        "issn": [
          "2195-0008"
        ], 
        "name": "EPJ Nonlinear Biomedical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "name": "The effect of model rescaling and normalization on sensitivity analysis on an example of a MAPK pathway model", 
    "pagination": "3", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1d1ba34fbe738105beb491e6e569dd04e57c401c81757ec147dec383a6a55335"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1140/epjnbp/s40366-016-0030-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1006110438"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1140/epjnbp/s40366-016-0030-z", 
      "https://app.dimensions.ai/details/publication/pub.1006110438"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000503.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1140%2Fepjnbp%2Fs40366-016-0030-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epjnbp/s40366-016-0030-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epjnbp/s40366-016-0030-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epjnbp/s40366-016-0030-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epjnbp/s40366-016-0030-z'


 

This table displays all metadata directly associated to this object as RDF triples.

150 TRIPLES      21 PREDICATES      49 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1140/epjnbp/s40366-016-0030-z schema:about anzsrc-for:14
2 anzsrc-for:1402
3 schema:author Nfbe0ef4290cb413cbc8ed653b0198dbb
4 schema:citation sg:pub.10.1038/ncb1543
5 sg:pub.10.1038/nrm1743
6 sg:pub.10.1186/1471-2105-11-202
7 sg:pub.10.1186/s12918-017-0392-6
8 https://doi.org/10.1002/psp4.6
9 https://doi.org/10.1016/j.cpc.2009.09.018
10 https://doi.org/10.1016/j.febslet.2005.02.002
11 https://doi.org/10.1016/j.ifacol.2016.12.103
12 https://doi.org/10.1016/s0378-4754(00)00270-6
13 https://doi.org/10.1021/ie900139x
14 https://doi.org/10.1046/j.1432-1327.2000.01197.x
15 https://doi.org/10.1049/iet-syb.2011.0015
16 https://doi.org/10.1049/ip-syb:20050088
17 https://doi.org/10.1093/bioinformatics/btm397
18 https://doi.org/10.1093/biomet/56.3.635
19 https://doi.org/10.1142/s0218339098000054
20 https://doi.org/10.1155/2014/361590
21 https://doi.org/10.1371/journal.pone.0079244
22 https://doi.org/10.1371/journal.pone.0087293
23 https://doi.org/10.1371/journal.pone.0107165
24 https://doi.org/10.18637/jss.v016.i04
25 https://doi.org/10.3389/fimmu.2012.00062
26 schema:datePublished 2016-12
27 schema:datePublishedReg 2016-12-01
28 schema:description The description of intracellular processes based on chemical reaction kinetics has become a standard approach in the last decades, and parameter estimation poses several challenges. Sensitivity analysis is a powerful tool in model development that can aid model calibration in various ways. Results can for example be used to simplify the model by elimination or fixation of parameters that have a negligible influence on relevant model outputs. However, models are usually subject to rescaling and normalization to reference experiments, which changes the variance of the output. Thus, the results of the sensitivity analysis may change depending on the choice of these rescaling factors and reference experiments. Although it might intuitively be clear, this fact has not been addressed in the literature so far. In this study we investigate the effect of model rescaling and additional normalization to a reference experiment on the outcome of two different sensitivity analyses. Results are exemplified on a model for the MAPK pathway module in PC-12 cell lines. For this purpose we apply local sensitivity analysis and a global variance-based method based on Sobol sensitivity coefficients, and compare the results for differently scaled and normalized model versions. Results indicate that both sensitivity analyses are invariant under simple rescaling of variables and parameters with constant factors, provided that sensitivity coefficients are normalized and that the parameter space is appropriately chosen for Sobol’s method. By contrast, normalization to a reference experiment that also depends on parameters has a large impact on the results of any sensitivity analysis, and in particular complicates the interpretation. This work shows that, in order to perform sensitivity analysis, it is necessary to take into account the dependency on parameters of the reference condition when working with normalized model versions.
29 schema:genre research_article
30 schema:inLanguage en
31 schema:isAccessibleForFree true
32 schema:isPartOf N257381233b4a47a99d9d6e685e3058b5
33 Nc28799691db64ae293a1135a6227390c
34 sg:journal.1295581
35 schema:name The effect of model rescaling and normalization on sensitivity analysis on an example of a MAPK pathway model
36 schema:pagination 3
37 schema:productId N4268ca7f648b44749f5393645debd5d7
38 N4713ddcc9c3c4eb8aa4322e2a42ba9c7
39 Na1c8e5e186a341a6a0b8bbb8ff90371a
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006110438
41 https://doi.org/10.1140/epjnbp/s40366-016-0030-z
42 schema:sdDatePublished 2019-04-10T15:49
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher N772fac7000064df48112ad9418d13bb2
45 schema:url http://link.springer.com/10.1140%2Fepjnbp%2Fs40366-016-0030-z
46 sgo:license sg:explorer/license/
47 sgo:sdDataset articles
48 rdf:type schema:ScholarlyArticle
49 N257381233b4a47a99d9d6e685e3058b5 schema:volumeNumber 4
50 rdf:type schema:PublicationVolume
51 N4268ca7f648b44749f5393645debd5d7 schema:name dimensions_id
52 schema:value pub.1006110438
53 rdf:type schema:PropertyValue
54 N4713ddcc9c3c4eb8aa4322e2a42ba9c7 schema:name doi
55 schema:value 10.1140/epjnbp/s40366-016-0030-z
56 rdf:type schema:PropertyValue
57 N772fac7000064df48112ad9418d13bb2 schema:name Springer Nature - SN SciGraph project
58 rdf:type schema:Organization
59 Na1c8e5e186a341a6a0b8bbb8ff90371a schema:name readcube_id
60 schema:value 1d1ba34fbe738105beb491e6e569dd04e57c401c81757ec147dec383a6a55335
61 rdf:type schema:PropertyValue
62 Nb6926e8af2d043e1b213fb6f74773297 rdf:first sg:person.011354611403.18
63 rdf:rest Nd13e976c8f844503a5b9609d8745648d
64 Nc28799691db64ae293a1135a6227390c schema:issueNumber 1
65 rdf:type schema:PublicationIssue
66 Nd13e976c8f844503a5b9609d8745648d rdf:first sg:person.01252310765.04
67 rdf:rest rdf:nil
68 Ndd42dbe84e3b4f2ebd91840a5c9466a4 rdf:first sg:person.0757556031.57
69 rdf:rest Nb6926e8af2d043e1b213fb6f74773297
70 Nf463e85b2b4a47f79533bd3ca242a5a7 schema:affiliation https://www.grid.ac/institutes/grid.5719.a
71 schema:familyName Kirch
72 schema:givenName Jakob
73 rdf:type schema:Person
74 Nfbe0ef4290cb413cbc8ed653b0198dbb rdf:first Nf463e85b2b4a47f79533bd3ca242a5a7
75 rdf:rest Ndd42dbe84e3b4f2ebd91840a5c9466a4
76 anzsrc-for:14 schema:inDefinedTermSet anzsrc-for:
77 schema:name Economics
78 rdf:type schema:DefinedTerm
79 anzsrc-for:1402 schema:inDefinedTermSet anzsrc-for:
80 schema:name Applied Economics
81 rdf:type schema:DefinedTerm
82 sg:journal.1295581 schema:issn 2195-0008
83 schema:name EPJ Nonlinear Biomedical Physics
84 rdf:type schema:Periodical
85 sg:person.011354611403.18 schema:affiliation https://www.grid.ac/institutes/grid.5719.a
86 schema:familyName Jensch
87 schema:givenName Antje
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011354611403.18
89 rdf:type schema:Person
90 sg:person.01252310765.04 schema:affiliation https://www.grid.ac/institutes/grid.5719.a
91 schema:familyName Radde
92 schema:givenName Nicole E.
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01252310765.04
94 rdf:type schema:Person
95 sg:person.0757556031.57 schema:affiliation https://www.grid.ac/institutes/grid.5719.a
96 schema:familyName Thomaseth
97 schema:givenName Caterina
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0757556031.57
99 rdf:type schema:Person
100 sg:pub.10.1038/ncb1543 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030798217
101 https://doi.org/10.1038/ncb1543
102 rdf:type schema:CreativeWork
103 sg:pub.10.1038/nrm1743 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047623240
104 https://doi.org/10.1038/nrm1743
105 rdf:type schema:CreativeWork
106 sg:pub.10.1186/1471-2105-11-202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011903723
107 https://doi.org/10.1186/1471-2105-11-202
108 rdf:type schema:CreativeWork
109 sg:pub.10.1186/s12918-017-0392-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074209340
110 https://doi.org/10.1186/s12918-017-0392-6
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1002/psp4.6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003957205
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/j.cpc.2009.09.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030703354
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.febslet.2005.02.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037612495
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.ifacol.2016.12.103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023674191
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/s0378-4754(00)00270-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042923152
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1021/ie900139x schema:sameAs https://app.dimensions.ai/details/publication/pub.1055644132
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1046/j.1432-1327.2000.01197.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1004927460
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1049/iet-syb.2011.0015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056839009
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1049/ip-syb:20050088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056860265
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1093/bioinformatics/btm397 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006119407
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1093/biomet/56.3.635 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059417857
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1142/s0218339098000054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062974518
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1155/2014/361590 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035197196
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1371/journal.pone.0079244 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015881429
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1371/journal.pone.0087293 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027042552
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1371/journal.pone.0107165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018867808
143 rdf:type schema:CreativeWork
144 https://doi.org/10.18637/jss.v016.i04 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068672248
145 rdf:type schema:CreativeWork
146 https://doi.org/10.3389/fimmu.2012.00062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000123716
147 rdf:type schema:CreativeWork
148 https://www.grid.ac/institutes/grid.5719.a schema:alternateName University of Stuttgart
149 schema:name Institute for Systems Theory and Automatic Control, University of Stuttgart, Pfaffenwaldring 9, 70569, Stuttgart, Germany
150 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...