Network concepts for analyzing 3D genome structure from chromosomal contact maps View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-12

AUTHORS

Jean-Baptiste Morlot, Julien Mozziconacci, Annick Lesne

ABSTRACT

The recent experimental technique of chromosome conformational capture gives an in-vivo access to pairwise contact frequencies between genomic loci. We present how network analysis can be exploited to extract information from genome-wide contact maps. We recently proposed to use graph distance for deriving a complete distance matrix from sparse contact maps. Completed with multidimensional scaling (MDS), this network-based method provided a fast algorithm, ShRec3D, for reconstructing 3D genome structures. We here develop an extension of this algorithm, by devising a tunable variant of the graph distance and introducing an alternative implementation of multidimensional scaling. This extended algorithm is shown to be more flexible so as to accommodate additional experimental constraints, focus on specific spatial scales, and produce tractable representations of human data. Network representation of genomic contacts offers a path where physical and systemic approaches are joined to unravel the biological role of the 3D genome structure. More... »

PAGES

2

Identifiers

URI

http://scigraph.springernature.com/pub.10.1140/epjnbp/s40366-016-0029-5

DOI

http://dx.doi.org/10.1140/epjnbp/s40366-016-0029-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1049354581


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Laboratoire de Physique Th\u00e9orique de la Mati\u00e8re Condens\u00e9e UMR 7600, CNRS, UPMC, Sorbonne Universit\u00e9s, 4 place Jussieu, 75252, Paris cedex 5, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Morlot", 
        "givenName": "Jean-Baptiste", 
        "id": "sg:person.014246013523.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014246013523.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Laboratoire de Physique Th\u00e9orique de la Mati\u00e8re Condens\u00e9e UMR 7600, CNRS, UPMC, Sorbonne Universit\u00e9s, 4 place Jussieu, 75252, Paris cedex 5, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mozziconacci", 
        "givenName": "Julien", 
        "id": "sg:person.01124147504.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01124147504.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Laboratoire de Physique Th\u00e9orique de la Mati\u00e8re Condens\u00e9e UMR 7600, CNRS, UPMC, Sorbonne Universit\u00e9s, 4 place Jussieu, 75252, Paris cedex 5, France", 
            "Institut de G\u00e9n\u00e9tique Mol\u00e9culaire de Montpellier UMR 5535, CNRS, Universit\u00e9 de Montpellier, 1919 route de Mende, 34293, Montpellier cedex 5, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lesne", 
        "givenName": "Annick", 
        "id": "sg:person.0744221641.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744221641.51"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/1471-2164-13-436", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000529945", 
          "https://doi.org/10.1186/1471-2164-13-436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1359-0278(97)00041-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001124166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.celrep.2012.09.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002162260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.febslet.2015.05.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003625459"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02288916", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004309834", 
          "https://doi.org/10.1007/bf02288916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02288916", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004309834", 
          "https://doi.org/10.1007/bf02288916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physrep.2005.10.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006977567"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1181369", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007401642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1181369", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007401642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btu268", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013885753"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btu283", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018695668"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2009-10-4-r37", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019349895", 
          "https://doi.org/10.1186/gb-2009-10-4-r37"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1067799", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021591890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1004221", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025283575"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjst/e2008-00830-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025673232", 
          "https://doi.org/10.1140/epjst/e2008-00830-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature11082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040271530", 
          "https://doi.org/10.1038/nature11082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/genes6030734", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042341838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02460044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043222138", 
          "https://doi.org/10.1007/bf02460044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02460044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043222138", 
          "https://doi.org/10.1007/bf02460044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02289565", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044215102", 
          "https://doi.org/10.1007/bf02289565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02289565", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044215102", 
          "https://doi.org/10.1007/bf02289565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7554/elife.03318", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045704917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2014.11.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047951603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btr143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048586671"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/msb.2010.79", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050640520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/msb.2010.79", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050640520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.3104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052924096", 
          "https://doi.org/10.1038/nmeth.3104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jcb.23155", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053266888"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cr3002356", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054071422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/cmb.2013.0076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059246186"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/cshperspect.a019356", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060406989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.111.118102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060762056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.111.118102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060762056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/t-c.1969.222678", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061455087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s003614450342480", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062877811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s003614450342480", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062877811"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-12", 
    "datePublishedReg": "2016-12-01", 
    "description": "The recent experimental technique of chromosome conformational capture gives an in-vivo access to pairwise contact frequencies between genomic loci. We present how network analysis can be exploited to extract information from genome-wide contact maps. We recently proposed to use graph distance for deriving a complete distance matrix from sparse contact maps. Completed with multidimensional scaling (MDS), this network-based method provided a fast algorithm, ShRec3D, for reconstructing 3D genome structures. We here develop an extension of this algorithm, by devising a tunable variant of the graph distance and introducing an alternative implementation of multidimensional scaling. This extended algorithm is shown to be more flexible so as to accommodate additional experimental constraints, focus on specific spatial scales, and produce tractable representations of human data. Network representation of genomic contacts offers a path where physical and systemic approaches are joined to unravel the biological role of the 3D genome structure.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1140/epjnbp/s40366-016-0029-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7154812", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.4524852", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1295581", 
        "issn": [
          "2195-0008"
        ], 
        "name": "EPJ Nonlinear Biomedical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "name": "Network concepts for analyzing 3D genome structure from chromosomal contact maps", 
    "pagination": "2", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "eb1d46fbc460379bdc546fff2de42ac81b5fe58edb155425da32139180a0ceed"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1140/epjnbp/s40366-016-0029-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1049354581"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1140/epjnbp/s40366-016-0029-5", 
      "https://app.dimensions.ai/details/publication/pub.1049354581"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:41", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000508.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1140%2Fepjnbp%2Fs40366-016-0029-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epjnbp/s40366-016-0029-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epjnbp/s40366-016-0029-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epjnbp/s40366-016-0029-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epjnbp/s40366-016-0029-5'


 

This table displays all metadata directly associated to this object as RDF triples.

177 TRIPLES      21 PREDICATES      56 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1140/epjnbp/s40366-016-0029-5 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author N174c37d1e76b46c1b6be0b6ed9292d1d
4 schema:citation sg:pub.10.1007/bf02288916
5 sg:pub.10.1007/bf02289565
6 sg:pub.10.1007/bf02460044
7 sg:pub.10.1038/nature11082
8 sg:pub.10.1038/nmeth.3104
9 sg:pub.10.1140/epjst/e2008-00830-8
10 sg:pub.10.1186/1471-2164-13-436
11 sg:pub.10.1186/gb-2009-10-4-r37
12 https://doi.org/10.1002/jcb.23155
13 https://doi.org/10.1016/j.cell.2014.11.021
14 https://doi.org/10.1016/j.celrep.2012.09.022
15 https://doi.org/10.1016/j.febslet.2015.05.012
16 https://doi.org/10.1016/j.physrep.2005.10.009
17 https://doi.org/10.1016/s1359-0278(97)00041-2
18 https://doi.org/10.1021/cr3002356
19 https://doi.org/10.1038/msb.2010.79
20 https://doi.org/10.1089/cmb.2013.0076
21 https://doi.org/10.1093/bioinformatics/btr143
22 https://doi.org/10.1093/bioinformatics/btu268
23 https://doi.org/10.1093/bioinformatics/btu283
24 https://doi.org/10.1101/cshperspect.a019356
25 https://doi.org/10.1103/physrevlett.111.118102
26 https://doi.org/10.1109/t-c.1969.222678
27 https://doi.org/10.1126/science.1067799
28 https://doi.org/10.1126/science.1181369
29 https://doi.org/10.1137/s003614450342480
30 https://doi.org/10.1371/journal.pcbi.1004221
31 https://doi.org/10.3390/genes6030734
32 https://doi.org/10.7554/elife.03318
33 schema:datePublished 2016-12
34 schema:datePublishedReg 2016-12-01
35 schema:description The recent experimental technique of chromosome conformational capture gives an in-vivo access to pairwise contact frequencies between genomic loci. We present how network analysis can be exploited to extract information from genome-wide contact maps. We recently proposed to use graph distance for deriving a complete distance matrix from sparse contact maps. Completed with multidimensional scaling (MDS), this network-based method provided a fast algorithm, ShRec3D, for reconstructing 3D genome structures. We here develop an extension of this algorithm, by devising a tunable variant of the graph distance and introducing an alternative implementation of multidimensional scaling. This extended algorithm is shown to be more flexible so as to accommodate additional experimental constraints, focus on specific spatial scales, and produce tractable representations of human data. Network representation of genomic contacts offers a path where physical and systemic approaches are joined to unravel the biological role of the 3D genome structure.
36 schema:genre research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree true
39 schema:isPartOf N0f15f837e1104359ae332cdd9e85bed1
40 Ne0177a9cdb8345e58afe289f4b31c11a
41 sg:journal.1295581
42 schema:name Network concepts for analyzing 3D genome structure from chromosomal contact maps
43 schema:pagination 2
44 schema:productId N2b15aad3aceb4a16a9ead56e27c03e70
45 N40c2c268f359464e94da8c64bbd6067c
46 Na066cf50dd4e4aaf90aaea6312d73d00
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049354581
48 https://doi.org/10.1140/epjnbp/s40366-016-0029-5
49 schema:sdDatePublished 2019-04-10T16:41
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher N1fbdc768fa794fbea578e650c33850a0
52 schema:url http://link.springer.com/10.1140%2Fepjnbp%2Fs40366-016-0029-5
53 sgo:license sg:explorer/license/
54 sgo:sdDataset articles
55 rdf:type schema:ScholarlyArticle
56 N0f15f837e1104359ae332cdd9e85bed1 schema:volumeNumber 4
57 rdf:type schema:PublicationVolume
58 N174c37d1e76b46c1b6be0b6ed9292d1d rdf:first sg:person.014246013523.24
59 rdf:rest Nbf6dcbed14914aac9a34e49f6bb13aaa
60 N1fbdc768fa794fbea578e650c33850a0 schema:name Springer Nature - SN SciGraph project
61 rdf:type schema:Organization
62 N2b15aad3aceb4a16a9ead56e27c03e70 schema:name readcube_id
63 schema:value eb1d46fbc460379bdc546fff2de42ac81b5fe58edb155425da32139180a0ceed
64 rdf:type schema:PropertyValue
65 N40c2c268f359464e94da8c64bbd6067c schema:name doi
66 schema:value 10.1140/epjnbp/s40366-016-0029-5
67 rdf:type schema:PropertyValue
68 N4b5edb6aa471413e89e2c44282a76f13 schema:name Laboratoire de Physique Théorique de la Matière Condensée UMR 7600, CNRS, UPMC, Sorbonne Universités, 4 place Jussieu, 75252, Paris cedex 5, France
69 rdf:type schema:Organization
70 Na066cf50dd4e4aaf90aaea6312d73d00 schema:name dimensions_id
71 schema:value pub.1049354581
72 rdf:type schema:PropertyValue
73 Nbf6dcbed14914aac9a34e49f6bb13aaa rdf:first sg:person.01124147504.64
74 rdf:rest Nd105c2d8136c4a44833b356c729a1f11
75 Nd105c2d8136c4a44833b356c729a1f11 rdf:first sg:person.0744221641.51
76 rdf:rest rdf:nil
77 Ne0177a9cdb8345e58afe289f4b31c11a schema:issueNumber 1
78 rdf:type schema:PublicationIssue
79 Ne1b73a222cb9445d9c382b5b30d24b3e schema:name Institut de Génétique Moléculaire de Montpellier UMR 5535, CNRS, Université de Montpellier, 1919 route de Mende, 34293, Montpellier cedex 5, France
80 Laboratoire de Physique Théorique de la Matière Condensée UMR 7600, CNRS, UPMC, Sorbonne Universités, 4 place Jussieu, 75252, Paris cedex 5, France
81 rdf:type schema:Organization
82 Nf7c4a7fc55774384892b5dc4d58a4a74 schema:name Laboratoire de Physique Théorique de la Matière Condensée UMR 7600, CNRS, UPMC, Sorbonne Universités, 4 place Jussieu, 75252, Paris cedex 5, France
83 rdf:type schema:Organization
84 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
85 schema:name Information and Computing Sciences
86 rdf:type schema:DefinedTerm
87 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
88 schema:name Information Systems
89 rdf:type schema:DefinedTerm
90 sg:grant.4524852 http://pending.schema.org/fundedItem sg:pub.10.1140/epjnbp/s40366-016-0029-5
91 rdf:type schema:MonetaryGrant
92 sg:grant.7154812 http://pending.schema.org/fundedItem sg:pub.10.1140/epjnbp/s40366-016-0029-5
93 rdf:type schema:MonetaryGrant
94 sg:journal.1295581 schema:issn 2195-0008
95 schema:name EPJ Nonlinear Biomedical Physics
96 rdf:type schema:Periodical
97 sg:person.01124147504.64 schema:affiliation Nf7c4a7fc55774384892b5dc4d58a4a74
98 schema:familyName Mozziconacci
99 schema:givenName Julien
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01124147504.64
101 rdf:type schema:Person
102 sg:person.014246013523.24 schema:affiliation N4b5edb6aa471413e89e2c44282a76f13
103 schema:familyName Morlot
104 schema:givenName Jean-Baptiste
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014246013523.24
106 rdf:type schema:Person
107 sg:person.0744221641.51 schema:affiliation Ne1b73a222cb9445d9c382b5b30d24b3e
108 schema:familyName Lesne
109 schema:givenName Annick
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744221641.51
111 rdf:type schema:Person
112 sg:pub.10.1007/bf02288916 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004309834
113 https://doi.org/10.1007/bf02288916
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/bf02289565 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044215102
116 https://doi.org/10.1007/bf02289565
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/bf02460044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043222138
119 https://doi.org/10.1007/bf02460044
120 rdf:type schema:CreativeWork
121 sg:pub.10.1038/nature11082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040271530
122 https://doi.org/10.1038/nature11082
123 rdf:type schema:CreativeWork
124 sg:pub.10.1038/nmeth.3104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052924096
125 https://doi.org/10.1038/nmeth.3104
126 rdf:type schema:CreativeWork
127 sg:pub.10.1140/epjst/e2008-00830-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025673232
128 https://doi.org/10.1140/epjst/e2008-00830-8
129 rdf:type schema:CreativeWork
130 sg:pub.10.1186/1471-2164-13-436 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000529945
131 https://doi.org/10.1186/1471-2164-13-436
132 rdf:type schema:CreativeWork
133 sg:pub.10.1186/gb-2009-10-4-r37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019349895
134 https://doi.org/10.1186/gb-2009-10-4-r37
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1002/jcb.23155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053266888
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.cell.2014.11.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047951603
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.celrep.2012.09.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002162260
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.febslet.2015.05.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003625459
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.physrep.2005.10.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006977567
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/s1359-0278(97)00041-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001124166
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1021/cr3002356 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054071422
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1038/msb.2010.79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050640520
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1089/cmb.2013.0076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059246186
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1093/bioinformatics/btr143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048586671
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1093/bioinformatics/btu268 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013885753
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1093/bioinformatics/btu283 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018695668
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1101/cshperspect.a019356 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060406989
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1103/physrevlett.111.118102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060762056
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1109/t-c.1969.222678 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061455087
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1126/science.1067799 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021591890
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1126/science.1181369 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007401642
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1137/s003614450342480 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062877811
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1371/journal.pcbi.1004221 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025283575
173 rdf:type schema:CreativeWork
174 https://doi.org/10.3390/genes6030734 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042341838
175 rdf:type schema:CreativeWork
176 https://doi.org/10.7554/elife.03318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045704917
177 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...