Is it possible to predict electromagnetic resonances in proteins, DNA and RNA? View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-12

AUTHORS

Irena Cosic, Drasko Cosic, Katarina Lazar

ABSTRACT

It has been shown that there are electromagnetic resonances in biological molecules (proteins, DNA and RNA) in the wide range of frequencies including THz, GHz, MHz and KHz. These resonances could be important for biological function of macromolecules, as well as could be used in development of devices like molecular computers. As experimental measurements of macromolecular resonances are timely and costly there is a need for computational methods that can reliably predict these resonances. We have previously used the Resonant Recognition Model (RRM) to predict electromagnetic resonances in tubulin and microtubules. Consequently, these predictions were confirmed experimentally. The RRM is developed by authors and is based on findings that protein, DNA and RNA electromagnetic resonances are related to the free electron energy distribution along the macromolecule. Here, we applied the Resonant Recognition Model (RRM) to predict possible electromagnetic resonances in telomerase as an example of protein, telomere as an example of DNA and TERT mRNA as an example of RNA macromolecules. We propose that RRM is a powerful model that can computationally predict protein, DNA and RNA electromagnetic resonances. More... »

PAGES

5

Journal

TITLE

EPJ Nonlinear Biomedical Physics

ISSUE

1

VOLUME

3

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1140/epjnbp/s40366-015-0020-6

DOI

http://dx.doi.org/10.1140/epjnbp/s40366-015-0020-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1046514106


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "RMIT University", 
          "id": "https://www.grid.ac/institutes/grid.1017.7", 
          "name": [
            "RMIT University, 3000, Melbourne, VIC, Australia", 
            "AMALNA Consulting, 46 Second St, 3193, Black Rock, VIC, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cosic", 
        "givenName": "Irena", 
        "id": "sg:person.01223734570.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01223734570.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "AMALNA Consulting, 46 Second St, 3193, Black Rock, VIC, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cosic", 
        "givenName": "Drasko", 
        "id": "sg:person.0703072403.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703072403.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "AMALNA Consulting, 46 Second St, 3193, Black Rock, VIC, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lazar", 
        "givenName": "Katarina", 
        "id": "sg:person.0751205603.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751205603.23"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0074-7696(08)61713-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001642360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep07303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006779234", 
          "https://doi.org/10.1038/srep07303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11467-007-0060-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008343592", 
          "https://doi.org/10.1007/s11467-007-0060-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bpj.2014.05.047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009524858"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0960-0779(91)90040-g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009770591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bios.2013.02.050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012884319"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1753-4631-1-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013005178", 
          "https://doi.org/10.1186/1753-4631-1-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/09553008914551331", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013635729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt0395-236", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015970804", 
          "https://doi.org/10.1038/nbt0395-236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03640210701704004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018027707"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03640210701704004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018027707"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.plrev.2013.08.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018420366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.61.4194", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021329080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.61.4194", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021329080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jtbi.2006.01.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026576553"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biosystems.2011.09.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034895676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jtbi.1996.0281", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037657063"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/09553000701227565", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042202456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-7475-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044044392", 
          "https://doi.org/10.1007/978-3-0348-7475-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-7475-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044044392", 
          "https://doi.org/10.1007/978-3-0348-7475-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01032070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049134708", 
          "https://doi.org/10.1007/bf01032070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1002421", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053002923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00114-013-1133-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053116404", 
          "https://doi.org/10.1007/s00114-013-1133-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4793995", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058070388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/10.335859", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061084522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnb.2014.2365851", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061714076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jpsj.18.1494", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063094060"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-12", 
    "datePublishedReg": "2015-12-01", 
    "description": "It has been shown that there are electromagnetic resonances in biological molecules (proteins, DNA and RNA) in the wide range of frequencies including THz, GHz, MHz and KHz. These resonances could be important for biological function of macromolecules, as well as could be used in development of devices like molecular computers. As experimental measurements of macromolecular resonances are timely and costly there is a need for computational methods that can reliably predict these resonances. We have previously used the Resonant Recognition Model (RRM) to predict electromagnetic resonances in tubulin and microtubules. Consequently, these predictions were confirmed experimentally. The RRM is developed by authors and is based on findings that protein, DNA and RNA electromagnetic resonances are related to the free electron energy distribution along the macromolecule. Here, we applied the Resonant Recognition Model (RRM) to predict possible electromagnetic resonances in telomerase as an example of protein, telomere as an example of DNA and TERT mRNA as an example of RNA macromolecules. We propose that RRM is a powerful model that can computationally predict protein, DNA and RNA electromagnetic resonances.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1140/epjnbp/s40366-015-0020-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1295581", 
        "issn": [
          "2195-0008"
        ], 
        "name": "EPJ Nonlinear Biomedical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "3"
      }
    ], 
    "name": "Is it possible to predict electromagnetic resonances in proteins, DNA and RNA?", 
    "pagination": "5", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "dd93514518acacb70f3dcdc57cec0ea3ec240b7c129c18fd4d6eae59c81fa76f"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1140/epjnbp/s40366-015-0020-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1046514106"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1140/epjnbp/s40366-015-0020-6", 
      "https://app.dimensions.ai/details/publication/pub.1046514106"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000507.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1140%2Fepjnbp%2Fs40366-015-0020-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epjnbp/s40366-015-0020-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epjnbp/s40366-015-0020-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epjnbp/s40366-015-0020-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epjnbp/s40366-015-0020-6'


 

This table displays all metadata directly associated to this object as RDF triples.

158 TRIPLES      21 PREDICATES      51 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1140/epjnbp/s40366-015-0020-6 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author N253317d2318249bbb910138aac4ff0c0
4 schema:citation sg:pub.10.1007/978-3-0348-7475-5
5 sg:pub.10.1007/bf01032070
6 sg:pub.10.1007/s00114-013-1133-3
7 sg:pub.10.1007/s11467-007-0060-1
8 sg:pub.10.1038/nbt0395-236
9 sg:pub.10.1038/srep07303
10 sg:pub.10.1186/1753-4631-1-7
11 https://doi.org/10.1006/jtbi.1996.0281
12 https://doi.org/10.1016/0960-0779(91)90040-g
13 https://doi.org/10.1016/j.bios.2013.02.050
14 https://doi.org/10.1016/j.biosystems.2011.09.005
15 https://doi.org/10.1016/j.bpj.2014.05.047
16 https://doi.org/10.1016/j.jtbi.2006.01.028
17 https://doi.org/10.1016/j.plrev.2013.08.002
18 https://doi.org/10.1016/s0074-7696(08)61713-1
19 https://doi.org/10.1063/1.4793995
20 https://doi.org/10.1080/03640210701704004
21 https://doi.org/10.1080/09553000701227565
22 https://doi.org/10.1080/09553008914551331
23 https://doi.org/10.1103/physreve.61.4194
24 https://doi.org/10.1109/10.335859
25 https://doi.org/10.1109/tnb.2014.2365851
26 https://doi.org/10.1143/jpsj.18.1494
27 https://doi.org/10.1371/journal.pcbi.1002421
28 schema:datePublished 2015-12
29 schema:datePublishedReg 2015-12-01
30 schema:description It has been shown that there are electromagnetic resonances in biological molecules (proteins, DNA and RNA) in the wide range of frequencies including THz, GHz, MHz and KHz. These resonances could be important for biological function of macromolecules, as well as could be used in development of devices like molecular computers. As experimental measurements of macromolecular resonances are timely and costly there is a need for computational methods that can reliably predict these resonances. We have previously used the Resonant Recognition Model (RRM) to predict electromagnetic resonances in tubulin and microtubules. Consequently, these predictions were confirmed experimentally. The RRM is developed by authors and is based on findings that protein, DNA and RNA electromagnetic resonances are related to the free electron energy distribution along the macromolecule. Here, we applied the Resonant Recognition Model (RRM) to predict possible electromagnetic resonances in telomerase as an example of protein, telomere as an example of DNA and TERT mRNA as an example of RNA macromolecules. We propose that RRM is a powerful model that can computationally predict protein, DNA and RNA electromagnetic resonances.
31 schema:genre research_article
32 schema:inLanguage en
33 schema:isAccessibleForFree true
34 schema:isPartOf N860b3d4c7bc247ad83cdf5462bcb1287
35 Nefa15e002425450d81f219bdc794a9a0
36 sg:journal.1295581
37 schema:name Is it possible to predict electromagnetic resonances in proteins, DNA and RNA?
38 schema:pagination 5
39 schema:productId N47dd0e9251d744888eef1fe885dbe880
40 N522e7f0d248e45e0821cea05a5378bd6
41 N6ab6502d47464e1f8ebd94cab7c48204
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046514106
43 https://doi.org/10.1140/epjnbp/s40366-015-0020-6
44 schema:sdDatePublished 2019-04-10T22:30
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher N701d986e034e4d9a9603e4991171628e
47 schema:url http://link.springer.com/10.1140%2Fepjnbp%2Fs40366-015-0020-6
48 sgo:license sg:explorer/license/
49 sgo:sdDataset articles
50 rdf:type schema:ScholarlyArticle
51 N214b61fe829749aca4ae5033b32d709e rdf:first sg:person.0751205603.23
52 rdf:rest rdf:nil
53 N253317d2318249bbb910138aac4ff0c0 rdf:first sg:person.01223734570.92
54 rdf:rest Nd3da411edbf54db88ca4340d96e94d9c
55 N47dd0e9251d744888eef1fe885dbe880 schema:name doi
56 schema:value 10.1140/epjnbp/s40366-015-0020-6
57 rdf:type schema:PropertyValue
58 N522e7f0d248e45e0821cea05a5378bd6 schema:name readcube_id
59 schema:value dd93514518acacb70f3dcdc57cec0ea3ec240b7c129c18fd4d6eae59c81fa76f
60 rdf:type schema:PropertyValue
61 N6ab6502d47464e1f8ebd94cab7c48204 schema:name dimensions_id
62 schema:value pub.1046514106
63 rdf:type schema:PropertyValue
64 N701d986e034e4d9a9603e4991171628e schema:name Springer Nature - SN SciGraph project
65 rdf:type schema:Organization
66 N72d154744ffe4579836bd17091e35254 schema:name AMALNA Consulting, 46 Second St, 3193, Black Rock, VIC, Australia
67 rdf:type schema:Organization
68 N860b3d4c7bc247ad83cdf5462bcb1287 schema:issueNumber 1
69 rdf:type schema:PublicationIssue
70 Nd2a7ed0ab3d44030b40593f15490537d schema:name AMALNA Consulting, 46 Second St, 3193, Black Rock, VIC, Australia
71 rdf:type schema:Organization
72 Nd3da411edbf54db88ca4340d96e94d9c rdf:first sg:person.0703072403.25
73 rdf:rest N214b61fe829749aca4ae5033b32d709e
74 Nefa15e002425450d81f219bdc794a9a0 schema:volumeNumber 3
75 rdf:type schema:PublicationVolume
76 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
77 schema:name Physical Sciences
78 rdf:type schema:DefinedTerm
79 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
80 schema:name Other Physical Sciences
81 rdf:type schema:DefinedTerm
82 sg:journal.1295581 schema:issn 2195-0008
83 schema:name EPJ Nonlinear Biomedical Physics
84 rdf:type schema:Periodical
85 sg:person.01223734570.92 schema:affiliation https://www.grid.ac/institutes/grid.1017.7
86 schema:familyName Cosic
87 schema:givenName Irena
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01223734570.92
89 rdf:type schema:Person
90 sg:person.0703072403.25 schema:affiliation Nd2a7ed0ab3d44030b40593f15490537d
91 schema:familyName Cosic
92 schema:givenName Drasko
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703072403.25
94 rdf:type schema:Person
95 sg:person.0751205603.23 schema:affiliation N72d154744ffe4579836bd17091e35254
96 schema:familyName Lazar
97 schema:givenName Katarina
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751205603.23
99 rdf:type schema:Person
100 sg:pub.10.1007/978-3-0348-7475-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044044392
101 https://doi.org/10.1007/978-3-0348-7475-5
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/bf01032070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049134708
104 https://doi.org/10.1007/bf01032070
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/s00114-013-1133-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053116404
107 https://doi.org/10.1007/s00114-013-1133-3
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/s11467-007-0060-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008343592
110 https://doi.org/10.1007/s11467-007-0060-1
111 rdf:type schema:CreativeWork
112 sg:pub.10.1038/nbt0395-236 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015970804
113 https://doi.org/10.1038/nbt0395-236
114 rdf:type schema:CreativeWork
115 sg:pub.10.1038/srep07303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006779234
116 https://doi.org/10.1038/srep07303
117 rdf:type schema:CreativeWork
118 sg:pub.10.1186/1753-4631-1-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013005178
119 https://doi.org/10.1186/1753-4631-1-7
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1006/jtbi.1996.0281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037657063
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/0960-0779(91)90040-g schema:sameAs https://app.dimensions.ai/details/publication/pub.1009770591
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.bios.2013.02.050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012884319
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.biosystems.2011.09.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034895676
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.bpj.2014.05.047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009524858
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.jtbi.2006.01.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026576553
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.plrev.2013.08.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018420366
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/s0074-7696(08)61713-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001642360
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1063/1.4793995 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058070388
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1080/03640210701704004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018027707
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1080/09553000701227565 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042202456
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1080/09553008914551331 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013635729
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1103/physreve.61.4194 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021329080
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1109/10.335859 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061084522
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1109/tnb.2014.2365851 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061714076
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1143/jpsj.18.1494 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063094060
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1371/journal.pcbi.1002421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053002923
154 rdf:type schema:CreativeWork
155 https://www.grid.ac/institutes/grid.1017.7 schema:alternateName RMIT University
156 schema:name AMALNA Consulting, 46 Second St, 3193, Black Rock, VIC, Australia
157 RMIT University, 3000, Melbourne, VIC, Australia
158 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...