Brain connectivity extended and expanded View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-12

AUTHORS

Obrad Kasum, Edin Dolicanin, Aleksandar Perovic, Aleksandar Jovanovic

ABSTRACT

The article is focused on the brain connectivity extensions and expansions, with the introductory elements in this section. In Causality measures and brain connectivity models, the necessary, basic properties demanded in the problem are summerized, which is followed by short introduction to Granger causality, Geweke developments, PDC, DTF measures, and short reflections on computation and comparison of measures. Analyzing model semantic stability, certain criteria are mandatory, formulated in preservation/coherence properties. In the sequel, a shorter addition to earlier critical presentation of brain connectivity measures, together with their computation and comparison is given, with special attention to Partial Directed Coherence, PDC and Directed Transfer Function, DTF, complementing earlier exposed errors in the treatment of these highly renowned authors and promoters of these broadly applied connectivity measures. Somewhat more general complementary methods are introduced in brain connectivity modeling in order to reach faithful and more realistic models of brain connectivity; this approach is applicable to the extraction of common information in multiple signals, when those are masked by, or embedded in noise and are elusive for the connectivity measures in current use; the methods applied are: Partial Linear Dependence and the method of recognition of (small) features in images contaminated with noise. Results are well illustrated with earlier published experiments of renowned authors, together with experimental material illustrating method extension and expansion in time. Critical findings, mainly addressing the connectivity model stability, together with the positive effects of method extension with weak connectivity are summarized. More... »

PAGES

4

Identifiers

URI

http://scigraph.springernature.com/pub.10.1140/epjnbp/s40366-015-0019-z

DOI

http://dx.doi.org/10.1140/epjnbp/s40366-015-0019-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1029163069


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "State University of Novi Pazar", 
          "id": "https://www.grid.ac/institutes/grid.445145.5", 
          "name": [
            "GIS-Group for Intelligent Systems, Faculty of Math, University of Belgrade, Studen trg 16, 11000, Belgrade, Serbia", 
            "State University of Novi Pazar, Novi Pazar, Serbia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kasum", 
        "givenName": "Obrad", 
        "id": "sg:person.014071373473.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014071373473.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "State University of Novi Pazar", 
          "id": "https://www.grid.ac/institutes/grid.445145.5", 
          "name": [
            "GIS-Group for Intelligent Systems, Faculty of Math, University of Belgrade, Studen trg 16, 11000, Belgrade, Serbia", 
            "State University of Novi Pazar, Novi Pazar, Serbia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dolicanin", 
        "givenName": "Edin", 
        "id": "sg:person.014426517041.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014426517041.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "State University of Novi Pazar", 
          "id": "https://www.grid.ac/institutes/grid.445145.5", 
          "name": [
            "GIS-Group for Intelligent Systems, Faculty of Math, University of Belgrade, Studen trg 16, 11000, Belgrade, Serbia", 
            "State University of Novi Pazar, Novi Pazar, Serbia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Perovic", 
        "givenName": "Aleksandar", 
        "id": "sg:person.07377310746.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07377310746.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "State University of Novi Pazar", 
          "id": "https://www.grid.ac/institutes/grid.445145.5", 
          "name": [
            "GIS-Group for Intelligent Systems, Faculty of Math, University of Belgrade, Studen trg 16, 11000, Belgrade, Serbia", 
            "State University of Novi Pazar, Novi Pazar, Serbia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jovanovic", 
        "givenName": "Aleksandar", 
        "id": "sg:person.0743170767.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0743170767.62"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0165-1889(80)90069-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001593247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0165-0270(99)00128-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012691458"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jneumeth.2005.09.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019093783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jneumeth.2005.09.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019093783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.018701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019666192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.018701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019666192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00198091", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022228526", 
          "https://doi.org/10.1007/bf00198091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00198091", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022228526", 
          "https://doi.org/10.1007/bf00198091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0079-6123(01)30004-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025115582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11517-011-0739-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025875543", 
          "https://doi.org/10.1007/s11517-011-0739-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00422-010-0410-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028879290", 
          "https://doi.org/10.1007/s00422-010-0410-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00422-010-0410-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028879290", 
          "https://doi.org/10.1007/s00422-010-0410-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/pl00007990", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039063057", 
          "https://doi.org/10.1007/pl00007990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10548-010-0158-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042936366", 
          "https://doi.org/10.1007/s10548-010-0158-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jneumeth.2005.06.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046312051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s004220000235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046917279", 
          "https://doi.org/10.1007/s004220000235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjnbp2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047133664", 
          "https://doi.org/10.1140/epjnbp2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10548-010-0137-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049326346", 
          "https://doi.org/10.1007/s10548-010-0137-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10548-010-0137-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049326346", 
          "https://doi.org/10.1007/s10548-010-0137-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1982.10477803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058302626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1984.10477110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058302955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.12700/aph.10.02.2013.2.11.", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064630592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1912791", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069640326"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077628739", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.1994.323794", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093488775"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2345178", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103089077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2345178", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103089077"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-12", 
    "datePublishedReg": "2015-12-01", 
    "description": "The article is focused on the brain connectivity extensions and expansions, with the introductory elements in this section. In Causality measures and brain connectivity models, the necessary, basic properties demanded in the problem are summerized, which is followed by short introduction to Granger causality, Geweke developments, PDC, DTF measures, and short reflections on computation and comparison of measures. Analyzing model semantic stability, certain criteria are mandatory, formulated in preservation/coherence properties. In the sequel, a shorter addition to earlier critical presentation of brain connectivity measures, together with their computation and comparison is given, with special attention to Partial Directed Coherence, PDC and Directed Transfer Function, DTF, complementing earlier exposed errors in the treatment of these highly renowned authors and promoters of these broadly applied connectivity measures. Somewhat more general complementary methods are introduced in brain connectivity modeling in order to reach faithful and more realistic models of brain connectivity; this approach is applicable to the extraction of common information in multiple signals, when those are masked by, or embedded in noise and are elusive for the connectivity measures in current use; the methods applied are: Partial Linear Dependence and the method of recognition of (small) features in images contaminated with noise. Results are well illustrated with earlier published experiments of renowned authors, together with experimental material illustrating method extension and expansion in time. Critical findings, mainly addressing the connectivity model stability, together with the positive effects of method extension with weak connectivity are summarized.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1140/epjnbp/s40366-015-0019-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1295581", 
        "issn": [
          "2195-0008"
        ], 
        "name": "EPJ Nonlinear Biomedical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "3"
      }
    ], 
    "name": "Brain connectivity extended and expanded", 
    "pagination": "4", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8aedbdb196461aae1241ef20fb4dde0c7742005708bb6fc681a4ee075cab95f3"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1140/epjnbp/s40366-015-0019-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1029163069"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1140/epjnbp/s40366-015-0019-z", 
      "https://app.dimensions.ai/details/publication/pub.1029163069"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000505.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1140%2Fepjnbp%2Fs40366-015-0019-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epjnbp/s40366-015-0019-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epjnbp/s40366-015-0019-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epjnbp/s40366-015-0019-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epjnbp/s40366-015-0019-z'


 

This table displays all metadata directly associated to this object as RDF triples.

152 TRIPLES      21 PREDICATES      48 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1140/epjnbp/s40366-015-0019-z schema:about anzsrc-for:11
2 anzsrc-for:1109
3 schema:author Nfee1fe661bb6455c9d597376e5942087
4 schema:citation sg:pub.10.1007/bf00198091
5 sg:pub.10.1007/pl00007990
6 sg:pub.10.1007/s00422-010-0410-x
7 sg:pub.10.1007/s004220000235
8 sg:pub.10.1007/s10548-010-0137-y
9 sg:pub.10.1007/s10548-010-0158-6
10 sg:pub.10.1007/s11517-011-0739-x
11 sg:pub.10.1140/epjnbp2
12 https://app.dimensions.ai/details/publication/pub.1077628739
13 https://doi.org/10.1016/0165-1889(80)90069-x
14 https://doi.org/10.1016/j.jneumeth.2005.06.011
15 https://doi.org/10.1016/j.jneumeth.2005.09.001
16 https://doi.org/10.1016/s0079-6123(01)30004-3
17 https://doi.org/10.1016/s0165-0270(99)00128-4
18 https://doi.org/10.1080/01621459.1982.10477803
19 https://doi.org/10.1080/01621459.1984.10477110
20 https://doi.org/10.1103/physrevlett.100.018701
21 https://doi.org/10.1109/cvpr.1994.323794
22 https://doi.org/10.12700/aph.10.02.2013.2.11.
23 https://doi.org/10.2307/1912791
24 https://doi.org/10.2307/2345178
25 schema:datePublished 2015-12
26 schema:datePublishedReg 2015-12-01
27 schema:description The article is focused on the brain connectivity extensions and expansions, with the introductory elements in this section. In Causality measures and brain connectivity models, the necessary, basic properties demanded in the problem are summerized, which is followed by short introduction to Granger causality, Geweke developments, PDC, DTF measures, and short reflections on computation and comparison of measures. Analyzing model semantic stability, certain criteria are mandatory, formulated in preservation/coherence properties. In the sequel, a shorter addition to earlier critical presentation of brain connectivity measures, together with their computation and comparison is given, with special attention to Partial Directed Coherence, PDC and Directed Transfer Function, DTF, complementing earlier exposed errors in the treatment of these highly renowned authors and promoters of these broadly applied connectivity measures. Somewhat more general complementary methods are introduced in brain connectivity modeling in order to reach faithful and more realistic models of brain connectivity; this approach is applicable to the extraction of common information in multiple signals, when those are masked by, or embedded in noise and are elusive for the connectivity measures in current use; the methods applied are: Partial Linear Dependence and the method of recognition of (small) features in images contaminated with noise. Results are well illustrated with earlier published experiments of renowned authors, together with experimental material illustrating method extension and expansion in time. Critical findings, mainly addressing the connectivity model stability, together with the positive effects of method extension with weak connectivity are summarized.
28 schema:genre research_article
29 schema:inLanguage en
30 schema:isAccessibleForFree true
31 schema:isPartOf N110ecdca274545feac6aff58222ecd27
32 Nd6e0fdf1693f45feaa19177ddb502bab
33 sg:journal.1295581
34 schema:name Brain connectivity extended and expanded
35 schema:pagination 4
36 schema:productId N5a66bc3ebfa94637a02bdd95ded127f3
37 Nad0b2efa7bac42bda9b7ba978ef736c4
38 Nf15307686f284f569301c21faef158b2
39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029163069
40 https://doi.org/10.1140/epjnbp/s40366-015-0019-z
41 schema:sdDatePublished 2019-04-10T13:14
42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
43 schema:sdPublisher Nea6f9f55cd834f7ca11b39d056861d32
44 schema:url http://link.springer.com/10.1140%2Fepjnbp%2Fs40366-015-0019-z
45 sgo:license sg:explorer/license/
46 sgo:sdDataset articles
47 rdf:type schema:ScholarlyArticle
48 N110ecdca274545feac6aff58222ecd27 schema:issueNumber 1
49 rdf:type schema:PublicationIssue
50 N5a66bc3ebfa94637a02bdd95ded127f3 schema:name doi
51 schema:value 10.1140/epjnbp/s40366-015-0019-z
52 rdf:type schema:PropertyValue
53 Na3483ac0c77d433ab8fed1e111ae646d rdf:first sg:person.07377310746.20
54 rdf:rest Nb13e8af483634fe8893d3d297d1580d1
55 Nad0b2efa7bac42bda9b7ba978ef736c4 schema:name dimensions_id
56 schema:value pub.1029163069
57 rdf:type schema:PropertyValue
58 Nb13e8af483634fe8893d3d297d1580d1 rdf:first sg:person.0743170767.62
59 rdf:rest rdf:nil
60 Nd6e0fdf1693f45feaa19177ddb502bab schema:volumeNumber 3
61 rdf:type schema:PublicationVolume
62 Nea6f9f55cd834f7ca11b39d056861d32 schema:name Springer Nature - SN SciGraph project
63 rdf:type schema:Organization
64 Nf15307686f284f569301c21faef158b2 schema:name readcube_id
65 schema:value 8aedbdb196461aae1241ef20fb4dde0c7742005708bb6fc681a4ee075cab95f3
66 rdf:type schema:PropertyValue
67 Nf77ba9ac0048457fba9dc56edfe55181 rdf:first sg:person.014426517041.34
68 rdf:rest Na3483ac0c77d433ab8fed1e111ae646d
69 Nfee1fe661bb6455c9d597376e5942087 rdf:first sg:person.014071373473.30
70 rdf:rest Nf77ba9ac0048457fba9dc56edfe55181
71 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
72 schema:name Medical and Health Sciences
73 rdf:type schema:DefinedTerm
74 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
75 schema:name Neurosciences
76 rdf:type schema:DefinedTerm
77 sg:journal.1295581 schema:issn 2195-0008
78 schema:name EPJ Nonlinear Biomedical Physics
79 rdf:type schema:Periodical
80 sg:person.014071373473.30 schema:affiliation https://www.grid.ac/institutes/grid.445145.5
81 schema:familyName Kasum
82 schema:givenName Obrad
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014071373473.30
84 rdf:type schema:Person
85 sg:person.014426517041.34 schema:affiliation https://www.grid.ac/institutes/grid.445145.5
86 schema:familyName Dolicanin
87 schema:givenName Edin
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014426517041.34
89 rdf:type schema:Person
90 sg:person.07377310746.20 schema:affiliation https://www.grid.ac/institutes/grid.445145.5
91 schema:familyName Perovic
92 schema:givenName Aleksandar
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07377310746.20
94 rdf:type schema:Person
95 sg:person.0743170767.62 schema:affiliation https://www.grid.ac/institutes/grid.445145.5
96 schema:familyName Jovanovic
97 schema:givenName Aleksandar
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0743170767.62
99 rdf:type schema:Person
100 sg:pub.10.1007/bf00198091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022228526
101 https://doi.org/10.1007/bf00198091
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/pl00007990 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039063057
104 https://doi.org/10.1007/pl00007990
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/s00422-010-0410-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1028879290
107 https://doi.org/10.1007/s00422-010-0410-x
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/s004220000235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046917279
110 https://doi.org/10.1007/s004220000235
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/s10548-010-0137-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1049326346
113 https://doi.org/10.1007/s10548-010-0137-y
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/s10548-010-0158-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042936366
116 https://doi.org/10.1007/s10548-010-0158-6
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/s11517-011-0739-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1025875543
119 https://doi.org/10.1007/s11517-011-0739-x
120 rdf:type schema:CreativeWork
121 sg:pub.10.1140/epjnbp2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047133664
122 https://doi.org/10.1140/epjnbp2
123 rdf:type schema:CreativeWork
124 https://app.dimensions.ai/details/publication/pub.1077628739 schema:CreativeWork
125 https://doi.org/10.1016/0165-1889(80)90069-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1001593247
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.jneumeth.2005.06.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046312051
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.jneumeth.2005.09.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019093783
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/s0079-6123(01)30004-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025115582
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/s0165-0270(99)00128-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012691458
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1080/01621459.1982.10477803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058302626
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1080/01621459.1984.10477110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058302955
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1103/physrevlett.100.018701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019666192
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1109/cvpr.1994.323794 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093488775
142 rdf:type schema:CreativeWork
143 https://doi.org/10.12700/aph.10.02.2013.2.11. schema:sameAs https://app.dimensions.ai/details/publication/pub.1064630592
144 rdf:type schema:CreativeWork
145 https://doi.org/10.2307/1912791 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069640326
146 rdf:type schema:CreativeWork
147 https://doi.org/10.2307/2345178 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103089077
148 rdf:type schema:CreativeWork
149 https://www.grid.ac/institutes/grid.445145.5 schema:alternateName State University of Novi Pazar
150 schema:name GIS-Group for Intelligent Systems, Faculty of Math, University of Belgrade, Studen trg 16, 11000, Belgrade, Serbia
151 State University of Novi Pazar, Novi Pazar, Serbia
152 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...