Ontology type: schema:ScholarlyArticle Open Access: True
2015-12
AUTHORSRichard A Lerski, Jacques D de Certaines, Dorota Duda, Wlodzimierz Klonowski, Guanyu Yang, Jean Louis Coatrieux, Noura Azzabou, Pierre-Antoine Eliat
ABSTRACTA goal of the multicenter European Cooperation in Science and Technology (COST) action MYO-MRI is to optimize Magnetic Resonance Imaging Texture Analysis (MRI-TA) methods for application in the study of muscle disease. This paper deals with recommendations on the optimal methodology to collect the MRI data, to analyse it via texture analysis and to make conclusions from the resultant texture parameter data. A full and detailed description is provided with respect to MR image quality control, sequence choice, image pre-processing, region of interest selection, texture analysis methods and data analysis. A series of conclusions are presented. More... »
PAGES2
http://scigraph.springernature.com/pub.10.1140/epjnbp/s40366-015-0018-0
DOIhttp://dx.doi.org/10.1140/epjnbp/s40366-015-0018-0
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1015975181
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Artificial Intelligence and Image Processing",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Ninewells Hospital",
"id": "https://www.grid.ac/institutes/grid.416266.1",
"name": [
"Medical Research Institute, Ninewells Hospital, Dundee, Scotland, UK"
],
"type": "Organization"
},
"familyName": "Lerski",
"givenName": "Richard A",
"id": "sg:person.050336650.78",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.050336650.78"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Piti\u00e9-Salp\u00eatri\u00e8re Hospital",
"id": "https://www.grid.ac/institutes/grid.411439.a",
"name": [
"Institute of Myology, University Hospital Piti\u00e9-Salp\u00eatri\u00e8re, Paris, France"
],
"type": "Organization"
},
"familyName": "de Certaines",
"givenName": "Jacques D",
"id": "sg:person.01232712431.63",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232712431.63"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Bialystok University of Technology",
"id": "https://www.grid.ac/institutes/grid.446127.2",
"name": [
"Faculty of Computer Science, Bialystok University of Technology, Bialystok, Poland"
],
"type": "Organization"
},
"familyName": "Duda",
"givenName": "Dorota",
"id": "sg:person.014756130515.31",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014756130515.31"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute of Biocybernetics and Biomedical Engineering",
"id": "https://www.grid.ac/institutes/grid.418829.e",
"name": [
"Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Warsaw, Poland"
],
"type": "Organization"
},
"familyName": "Klonowski",
"givenName": "Wlodzimierz",
"id": "sg:person.01130353707.87",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130353707.87"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Southeast University",
"id": "https://www.grid.ac/institutes/grid.263826.b",
"name": [
"Laboratory of Image Science and Technology, School of Computer Science and Engineering, Southeast University, 210096, Nanjing, China",
"Centre de Recherche en Information Biom\u00e9dicale Sino-fran\u00e7ais (CRIBs), Nanjing, China"
],
"type": "Organization"
},
"familyName": "Yang",
"givenName": "Guanyu",
"id": "sg:person.0655053204.41",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0655053204.41"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Laboratoire Traitement du Signal et de l'Image",
"id": "https://www.grid.ac/institutes/grid.463996.7",
"name": [
"INSERM, U1099, F-35000, Rennes, France",
"Universit\u00e9 de Rennes 1, LTSI, F-35042, Rennes, France",
"Centre de Recherche en Information Biom\u00e9dicale Sino-fran\u00e7ais (CRIBs), F-35000, Rennes, France"
],
"type": "Organization"
},
"familyName": "Coatrieux",
"givenName": "Jean Louis",
"id": "sg:person.0754301407.95",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754301407.95"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Piti\u00e9-Salp\u00eatri\u00e8re Hospital",
"id": "https://www.grid.ac/institutes/grid.411439.a",
"name": [
"Institute of Myology, University Hospital Piti\u00e9-Salp\u00eatri\u00e8re, Paris, France"
],
"type": "Organization"
},
"familyName": "Azzabou",
"givenName": "Noura",
"id": "sg:person.01253316371.35",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01253316371.35"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Rennes 1",
"id": "https://www.grid.ac/institutes/grid.410368.8",
"name": [
"PRISM-Bio-SCANs, University of Rennes, Rennes, France"
],
"type": "Organization"
},
"familyName": "Eliat",
"givenName": "Pierre-Antoine",
"id": "sg:person.0641301471.49",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641301471.49"
],
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1002/mrm.1910180211",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006960092"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0730-725x(88)90451-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1007521352"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/jmri.1880050221",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1013975857"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.nmd.2013.10.005",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1015233062"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10334-004-0032-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1018013211",
"https://doi.org/10.1007/s10334-004-0032-1"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.mri.2003.09.001",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1018018059"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0730-725x(99)00066-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1018906367"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1117/12.2006892",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020143501"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.nmd.2014.02.009",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020257440"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/1-4020-0613-6_8640",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020717687",
"https://doi.org/10.1007/1-4020-0613-6_8640"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/jsfa.1841",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024239767"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.mri.2005.10.002",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024472554"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0730-725x(88)90450-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024519864"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0730-725x(93)90199-n",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1026865150"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/mus.21384",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1027172938"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/mus.21384",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1027172938"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0146-664x(75)80008-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1027475370"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0730-725x(85)90354-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1029977445"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/mrm.22916",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031888820"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0730-725x(93)90205-r",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1033543716"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.nmd.2007.03.013",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1033681075"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.chaos.2013.01.004",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1034578984"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11548-012-0810-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036409218",
"https://doi.org/10.1007/s11548-012-0810-6"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/1471-2342-8-18",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1042776146",
"https://doi.org/10.1186/1471-2342-8-18"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1118/1.1429630",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1044612659"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/mrm.20624",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1045538675"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/mrm.20624",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1045538675"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.ejmp.2014.07.119",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1048852068"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0167-8655(90)90112-f",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052071899"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0167-8655(90)90112-f",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052071899"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/10.678613",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061085243"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/emb.2007.906026",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061270280"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/memb.2007.911462",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061401730"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/memb.2008.918690",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061401735"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/proc.1979.11328",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061444219"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tsmc.1973.4309314",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061792707"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tsmc.1976.5408777",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061792978"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1119/1.13295",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1062230614"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1126/science.7569924",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1062647554"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1148/radiology.183.3.1584945",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1077042641"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1148/radiology.164.2.3602398",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1079845234"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/icpr.2000.903650",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1094157475"
],
"type": "CreativeWork"
}
],
"datePublished": "2015-12",
"datePublishedReg": "2015-12-01",
"description": "A goal of the multicenter European Cooperation in Science and Technology (COST) action MYO-MRI is to optimize Magnetic Resonance Imaging Texture Analysis (MRI-TA) methods for application in the study of muscle disease. This paper deals with recommendations on the optimal methodology to collect the MRI data, to analyse it via texture analysis and to make conclusions from the resultant texture parameter data. A full and detailed description is provided with respect to MR image quality control, sequence choice, image pre-processing, region of interest selection, texture analysis methods and data analysis. A series of conclusions are presented.",
"genre": "research_article",
"id": "sg:pub.10.1140/epjnbp/s40366-015-0018-0",
"inLanguage": [
"en"
],
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1295581",
"issn": [
"2195-0008"
],
"name": "EPJ Nonlinear Biomedical Physics",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "3"
}
],
"name": "Application of texture analysis to muscle MRI: 2 \u2013 technical recommendations",
"pagination": "2",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"4c1eb7065915bbcca73c51f61aa2fd8f90b39bf5069f17048b703e2147ff8428"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1140/epjnbp/s40366-015-0018-0"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1015975181"
]
}
],
"sameAs": [
"https://doi.org/10.1140/epjnbp/s40366-015-0018-0",
"https://app.dimensions.ai/details/publication/pub.1015975181"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-10T16:40",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000504.jsonl",
"type": "ScholarlyArticle",
"url": "http://link.springer.com/10.1140%2Fepjnbp%2Fs40366-015-0018-0"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epjnbp/s40366-015-0018-0'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epjnbp/s40366-015-0018-0'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epjnbp/s40366-015-0018-0'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epjnbp/s40366-015-0018-0'
This table displays all metadata directly associated to this object as RDF triples.
251 TRIPLES
21 PREDICATES
66 URIs
19 LITERALS
7 BLANK NODES