Application of texture analysis to muscle MRI: 1-What kind of information should be expected from texture analysis? View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-12

AUTHORS

Jacques D De Certaines, Thibaut Larcher, Dorota Duda, Noura Azzabou, Pierre-Antoine Eliat, Luis M Escudero, Antonio MG Pinheiro, Guanyu Yang, Jean-Louis Coatrieux, Eduard Snezkho, Alexey Shukelovich, Manuela Pereira, Richard A Lerski

ABSTRACT

Several previous clinical or preclinical studies using computerized texture analysis of MR Images have demonstrated much more clinical discrimination than visual image analysis by the radiologist. In muscular dystrophy, a discriminating power has been already demonstrated with various methods of texture analysis of magnetic resonance images (MRI-TA). Unfortunately, a scale gap exists between the spatial resolutions of histological and MR images making a direct correlation impossible. Furthermore, the effect of the various histological modifications on the grey level of each pixel is complex and cannot be easily analyzed. Consequently, clinicians will not accept the use of MRI-TA in routine practice if TA remains a “black box” without clinical correspondence at a tissue level. A goal therefore of the multicenter European COST action MYO-MRI is to optimize MRI-TA methods in muscular dystrophy and to elucidate the histological meaning of MRI textures. More... »

PAGES

3

Identifiers

URI

http://scigraph.springernature.com/pub.10.1140/epjnbp/s40366-015-0017-1

DOI

http://dx.doi.org/10.1140/epjnbp/s40366-015-0017-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1049259661


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Atomic Energy and Alternative Energies Commission", 
          "id": "https://www.grid.ac/institutes/grid.5583.b", 
          "name": [
            "Institute of Myology, NMR laboratory, Paris, France", 
            "CEA, I2BM, MIRCen, NMR laboratory, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "De Certaines", 
        "givenName": "Jacques D", 
        "id": "sg:person.01232712431.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232712431.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "INRA, UMR 703 PAnTher, Oniris, Nantes, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Larcher", 
        "givenName": "Thibaut", 
        "id": "sg:person.01317063544.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01317063544.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Bialystok University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.446127.2", 
          "name": [
            "Faculty of Computer Science, Bialystok University of Technology, Bialystok, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Duda", 
        "givenName": "Dorota", 
        "id": "sg:person.014756130515.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014756130515.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Atomic Energy and Alternative Energies Commission", 
          "id": "https://www.grid.ac/institutes/grid.5583.b", 
          "name": [
            "Institute of Myology, NMR laboratory, Paris, France", 
            "CEA, I2BM, MIRCen, NMR laboratory, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Azzabou", 
        "givenName": "Noura", 
        "id": "sg:person.01253316371.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01253316371.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Rennes 1", 
          "id": "https://www.grid.ac/institutes/grid.410368.8", 
          "name": [
            "PRISM-BioSCANs, University of Rennes, Rennes, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Eliat", 
        "givenName": "Pierre-Antoine", 
        "id": "sg:person.0641301471.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641301471.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Seville", 
          "id": "https://www.grid.ac/institutes/grid.9224.d", 
          "name": [
            "Instituto de Biomedicina, CSCIC Universidad de Sevilla, Sevilla, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Escudero", 
        "givenName": "Luis M", 
        "id": "sg:person.01336663700.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336663700.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Beira Interior", 
          "id": "https://www.grid.ac/institutes/grid.7427.6", 
          "name": [
            "University da Beira Interior, Covilha, Portugal"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pinheiro", 
        "givenName": "Antonio MG", 
        "id": "sg:person.010713705567.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010713705567.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Southeast University", 
          "id": "https://www.grid.ac/institutes/grid.263826.b", 
          "name": [
            "LIST, Southeast University, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Guanyu", 
        "id": "sg:person.0655053204.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0655053204.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire Traitement du Signal et de l'Image", 
          "id": "https://www.grid.ac/institutes/grid.463996.7", 
          "name": [
            "LTSI, INSERM, University of Rennes, Rennes, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Coatrieux", 
        "givenName": "Jean-Louis", 
        "id": "sg:person.0754301407.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754301407.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "United Institute of Informatics Problems", 
          "id": "https://www.grid.ac/institutes/grid.426549.8", 
          "name": [
            "Lab. Of Mathematical Cybernetics, UIIP, Belorussian Academy of Science, Minsk, Belarus"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Snezkho", 
        "givenName": "Eduard", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Myology", 
          "id": "https://www.grid.ac/institutes/grid.418250.a", 
          "name": [
            "Institute of Myology, NMR laboratory, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shukelovich", 
        "givenName": "Alexey", 
        "id": "sg:person.013015431655.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013015431655.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Beira Interior", 
          "id": "https://www.grid.ac/institutes/grid.7427.6", 
          "name": [
            "University da Beira Interior, Covilha, Portugal"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pereira", 
        "givenName": "Manuela", 
        "id": "sg:person.013526525767.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013526525767.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ninewells Hospital", 
          "id": "https://www.grid.ac/institutes/grid.416266.1", 
          "name": [
            "Ninewells Hosp. and Medical School, Dundee, Scotland, United Kingdom"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lerski", 
        "givenName": "Richard A", 
        "id": "sg:person.050336650.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.050336650.78"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/mus.880111008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000486307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/cpf.12107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001821675"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.visres.2004.03.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002510306"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0730-725x(93)90202-o", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004787593"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-510x(90)90095-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008382739"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-510x(90)90095-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008382739"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00336998", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011712804", 
          "https://doi.org/10.1007/bf00336998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nmd.2013.10.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015233062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0042-6989(91)90211-m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017317377"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0042-6989(91)90211-m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017317377"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10334-004-0032-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018013211", 
          "https://doi.org/10.1007/s10334-004-0032-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nmd.2004.11.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018142547"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0730-725x(99)00066-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018906367"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1053/jcpa.2001.0526", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023503870"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bpj.2014.04.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024125030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jsfa.1841", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024239767"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mri.2005.10.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024472554"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0730-725x(87)90003-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025400846"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0146-664x(75)80008-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027475370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s004010000308", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027611767", 
          "https://doi.org/10.1007/s004010000308"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0730-725x(93)90201-n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029103250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/218380.218446", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029683430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0730-725x(93)90205-r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033543716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.visres.2010.11.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033651973"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nmd.2007.03.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033681075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1741-7015-11-77", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035142884", 
          "https://doi.org/10.1186/1741-7015-11-77"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00335-011-9382-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035742110", 
          "https://doi.org/10.1007/s00335-011-9382-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1026553619983", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036231609", 
          "https://doi.org/10.1023/a:1026553619983"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11548-012-0810-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036409218", 
          "https://doi.org/10.1007/s11548-012-0810-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-45053-x_13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036628291", 
          "https://doi.org/10.1007/3-540-45053-x_13"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/334154a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036951697", 
          "https://doi.org/10.1038/334154a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.595535", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038765597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cmpb.2008.08.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042334862"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.visres.2007.01.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047947910"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/1.jbo.18.6.066017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052698654"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/scientificamerican0475-34", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056527023", 
          "https://doi.org/10.1038/scientificamerican0475-34"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/emb.2007.906026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061270280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2010.2062195", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061642610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tit.1962.1057698", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061645802"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmc.1973.4309314", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061792707"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmc.1976.5408777", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061792978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/josaa.3.000868", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065163819"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/josaa.7.000923", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065166332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.15579/gcsr.vol1.ch3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1088444388"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-12", 
    "datePublishedReg": "2015-12-01", 
    "description": "Several previous clinical or preclinical studies using computerized texture analysis of MR Images have demonstrated much more clinical discrimination than visual image analysis by the radiologist. In muscular dystrophy, a discriminating power has been already demonstrated with various methods of texture analysis of magnetic resonance images (MRI-TA). Unfortunately, a scale gap exists between the spatial resolutions of histological and MR images making a direct correlation impossible. Furthermore, the effect of the various histological modifications on the grey level of each pixel is complex and cannot be easily analyzed. Consequently, clinicians will not accept the use of MRI-TA in routine practice if TA remains a \u201cblack box\u201d without clinical correspondence at a tissue level. A goal therefore of the multicenter European COST action MYO-MRI is to optimize MRI-TA methods in muscular dystrophy and to elucidate the histological meaning of MRI textures.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1140/epjnbp/s40366-015-0017-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1295581", 
        "issn": [
          "2195-0008"
        ], 
        "name": "EPJ Nonlinear Biomedical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "3"
      }
    ], 
    "name": "Application of texture analysis to muscle MRI: 1-What kind of information should be expected from texture analysis?", 
    "pagination": "3", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "eaa9efdd07c8507453f0b19a19f50b4a0e2b4b43555c51366d7c52d246f54050"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1140/epjnbp/s40366-015-0017-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1049259661"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1140/epjnbp/s40366-015-0017-1", 
      "https://app.dimensions.ai/details/publication/pub.1049259661"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000508.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1140%2Fepjnbp%2Fs40366-015-0017-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epjnbp/s40366-015-0017-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epjnbp/s40366-015-0017-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epjnbp/s40366-015-0017-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epjnbp/s40366-015-0017-1'


 

This table displays all metadata directly associated to this object as RDF triples.

309 TRIPLES      21 PREDICATES      69 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1140/epjnbp/s40366-015-0017-1 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N558942a59c674f6888908e7015907a1d
4 schema:citation sg:pub.10.1007/3-540-45053-x_13
5 sg:pub.10.1007/bf00336998
6 sg:pub.10.1007/s00335-011-9382-y
7 sg:pub.10.1007/s004010000308
8 sg:pub.10.1007/s10334-004-0032-1
9 sg:pub.10.1007/s11548-012-0810-6
10 sg:pub.10.1023/a:1026553619983
11 sg:pub.10.1038/334154a0
12 sg:pub.10.1038/scientificamerican0475-34
13 sg:pub.10.1186/1741-7015-11-77
14 https://doi.org/10.1002/jsfa.1841
15 https://doi.org/10.1002/mus.880111008
16 https://doi.org/10.1016/0022-510x(90)90095-5
17 https://doi.org/10.1016/0042-6989(91)90211-m
18 https://doi.org/10.1016/0730-725x(87)90003-8
19 https://doi.org/10.1016/0730-725x(93)90201-n
20 https://doi.org/10.1016/0730-725x(93)90202-o
21 https://doi.org/10.1016/0730-725x(93)90205-r
22 https://doi.org/10.1016/j.bpj.2014.04.010
23 https://doi.org/10.1016/j.cmpb.2008.08.005
24 https://doi.org/10.1016/j.mri.2005.10.002
25 https://doi.org/10.1016/j.nmd.2004.11.002
26 https://doi.org/10.1016/j.nmd.2007.03.013
27 https://doi.org/10.1016/j.nmd.2013.10.005
28 https://doi.org/10.1016/j.visres.2004.03.029
29 https://doi.org/10.1016/j.visres.2007.01.009
30 https://doi.org/10.1016/j.visres.2010.11.005
31 https://doi.org/10.1016/s0146-664x(75)80008-6
32 https://doi.org/10.1016/s0730-725x(99)00066-1
33 https://doi.org/10.1053/jcpa.2001.0526
34 https://doi.org/10.1109/emb.2007.906026
35 https://doi.org/10.1109/tip.2010.2062195
36 https://doi.org/10.1109/tit.1962.1057698
37 https://doi.org/10.1109/tsmc.1973.4309314
38 https://doi.org/10.1109/tsmc.1976.5408777
39 https://doi.org/10.1111/cpf.12107
40 https://doi.org/10.1117/1.jbo.18.6.066017
41 https://doi.org/10.1118/1.595535
42 https://doi.org/10.1145/218380.218446
43 https://doi.org/10.1364/josaa.3.000868
44 https://doi.org/10.1364/josaa.7.000923
45 https://doi.org/10.15579/gcsr.vol1.ch3
46 schema:datePublished 2015-12
47 schema:datePublishedReg 2015-12-01
48 schema:description Several previous clinical or preclinical studies using computerized texture analysis of MR Images have demonstrated much more clinical discrimination than visual image analysis by the radiologist. In muscular dystrophy, a discriminating power has been already demonstrated with various methods of texture analysis of magnetic resonance images (MRI-TA). Unfortunately, a scale gap exists between the spatial resolutions of histological and MR images making a direct correlation impossible. Furthermore, the effect of the various histological modifications on the grey level of each pixel is complex and cannot be easily analyzed. Consequently, clinicians will not accept the use of MRI-TA in routine practice if TA remains a “black box” without clinical correspondence at a tissue level. A goal therefore of the multicenter European COST action MYO-MRI is to optimize MRI-TA methods in muscular dystrophy and to elucidate the histological meaning of MRI textures.
49 schema:genre research_article
50 schema:inLanguage en
51 schema:isAccessibleForFree true
52 schema:isPartOf Nb43cb00bc715456987b16a622acb873a
53 Nc16dd3c1550141809188716965542aa0
54 sg:journal.1295581
55 schema:name Application of texture analysis to muscle MRI: 1-What kind of information should be expected from texture analysis?
56 schema:pagination 3
57 schema:productId N058d9ebb60614eaf8f7c6f750c61b426
58 N7a17f159b81b456bb284ded1b8887210
59 Na7762eccc866405c98a7700366de2ff8
60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049259661
61 https://doi.org/10.1140/epjnbp/s40366-015-0017-1
62 schema:sdDatePublished 2019-04-10T22:30
63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
64 schema:sdPublisher Nfa04a7cf5ffb49c38f33483f64ea8b4d
65 schema:url http://link.springer.com/10.1140%2Fepjnbp%2Fs40366-015-0017-1
66 sgo:license sg:explorer/license/
67 sgo:sdDataset articles
68 rdf:type schema:ScholarlyArticle
69 N058d9ebb60614eaf8f7c6f750c61b426 schema:name readcube_id
70 schema:value eaa9efdd07c8507453f0b19a19f50b4a0e2b4b43555c51366d7c52d246f54050
71 rdf:type schema:PropertyValue
72 N09e96bcb57874d429ab0a2915198b8c6 rdf:first sg:person.010713705567.22
73 rdf:rest N4f6a0ed67c114bd69272581723035ec5
74 N11c4800e2cd846d3ab0f99af2ffc577c rdf:first sg:person.014756130515.31
75 rdf:rest Nd644340c24ac4526b2631614c616365f
76 N2d3be99824f84dff9233626245c33966 rdf:first sg:person.01317063544.31
77 rdf:rest N11c4800e2cd846d3ab0f99af2ffc577c
78 N4f6a0ed67c114bd69272581723035ec5 rdf:first sg:person.0655053204.41
79 rdf:rest Nbb29bd6bb54a4deb91c1b2b9751af3da
80 N558942a59c674f6888908e7015907a1d rdf:first sg:person.01232712431.63
81 rdf:rest N2d3be99824f84dff9233626245c33966
82 N6f71ee362aa94fc2bf3e7eaa2ad113cc rdf:first sg:person.013526525767.01
83 rdf:rest N787f5b15a5a34a7ba73c4197a7506efb
84 N787f5b15a5a34a7ba73c4197a7506efb rdf:first sg:person.050336650.78
85 rdf:rest rdf:nil
86 N7a17f159b81b456bb284ded1b8887210 schema:name dimensions_id
87 schema:value pub.1049259661
88 rdf:type schema:PropertyValue
89 N84cea310bc474805b9feb59b38a1d503 schema:name INRA, UMR 703 PAnTher, Oniris, Nantes, France
90 rdf:type schema:Organization
91 N8ee6503d8106406a85c5962de7010ca0 rdf:first Naf76539b51704b26ad55fee0ab7d8267
92 rdf:rest Ne314329506914234bf0ecf6311219a9a
93 N92880cfab28048f1a9e880c90e263c06 rdf:first sg:person.0641301471.49
94 rdf:rest N96d53283185744188d523b8dc817af0f
95 N96d53283185744188d523b8dc817af0f rdf:first sg:person.01336663700.25
96 rdf:rest N09e96bcb57874d429ab0a2915198b8c6
97 Na7762eccc866405c98a7700366de2ff8 schema:name doi
98 schema:value 10.1140/epjnbp/s40366-015-0017-1
99 rdf:type schema:PropertyValue
100 Naf76539b51704b26ad55fee0ab7d8267 schema:affiliation https://www.grid.ac/institutes/grid.426549.8
101 schema:familyName Snezkho
102 schema:givenName Eduard
103 rdf:type schema:Person
104 Nb43cb00bc715456987b16a622acb873a schema:issueNumber 1
105 rdf:type schema:PublicationIssue
106 Nbb29bd6bb54a4deb91c1b2b9751af3da rdf:first sg:person.0754301407.95
107 rdf:rest N8ee6503d8106406a85c5962de7010ca0
108 Nc16dd3c1550141809188716965542aa0 schema:volumeNumber 3
109 rdf:type schema:PublicationVolume
110 Nd644340c24ac4526b2631614c616365f rdf:first sg:person.01253316371.35
111 rdf:rest N92880cfab28048f1a9e880c90e263c06
112 Ne314329506914234bf0ecf6311219a9a rdf:first sg:person.013015431655.66
113 rdf:rest N6f71ee362aa94fc2bf3e7eaa2ad113cc
114 Nfa04a7cf5ffb49c38f33483f64ea8b4d schema:name Springer Nature - SN SciGraph project
115 rdf:type schema:Organization
116 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
117 schema:name Information and Computing Sciences
118 rdf:type schema:DefinedTerm
119 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
120 schema:name Artificial Intelligence and Image Processing
121 rdf:type schema:DefinedTerm
122 sg:journal.1295581 schema:issn 2195-0008
123 schema:name EPJ Nonlinear Biomedical Physics
124 rdf:type schema:Periodical
125 sg:person.010713705567.22 schema:affiliation https://www.grid.ac/institutes/grid.7427.6
126 schema:familyName Pinheiro
127 schema:givenName Antonio MG
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010713705567.22
129 rdf:type schema:Person
130 sg:person.01232712431.63 schema:affiliation https://www.grid.ac/institutes/grid.5583.b
131 schema:familyName De Certaines
132 schema:givenName Jacques D
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232712431.63
134 rdf:type schema:Person
135 sg:person.01253316371.35 schema:affiliation https://www.grid.ac/institutes/grid.5583.b
136 schema:familyName Azzabou
137 schema:givenName Noura
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01253316371.35
139 rdf:type schema:Person
140 sg:person.013015431655.66 schema:affiliation https://www.grid.ac/institutes/grid.418250.a
141 schema:familyName Shukelovich
142 schema:givenName Alexey
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013015431655.66
144 rdf:type schema:Person
145 sg:person.01317063544.31 schema:affiliation N84cea310bc474805b9feb59b38a1d503
146 schema:familyName Larcher
147 schema:givenName Thibaut
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01317063544.31
149 rdf:type schema:Person
150 sg:person.01336663700.25 schema:affiliation https://www.grid.ac/institutes/grid.9224.d
151 schema:familyName Escudero
152 schema:givenName Luis M
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336663700.25
154 rdf:type schema:Person
155 sg:person.013526525767.01 schema:affiliation https://www.grid.ac/institutes/grid.7427.6
156 schema:familyName Pereira
157 schema:givenName Manuela
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013526525767.01
159 rdf:type schema:Person
160 sg:person.014756130515.31 schema:affiliation https://www.grid.ac/institutes/grid.446127.2
161 schema:familyName Duda
162 schema:givenName Dorota
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014756130515.31
164 rdf:type schema:Person
165 sg:person.050336650.78 schema:affiliation https://www.grid.ac/institutes/grid.416266.1
166 schema:familyName Lerski
167 schema:givenName Richard A
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.050336650.78
169 rdf:type schema:Person
170 sg:person.0641301471.49 schema:affiliation https://www.grid.ac/institutes/grid.410368.8
171 schema:familyName Eliat
172 schema:givenName Pierre-Antoine
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641301471.49
174 rdf:type schema:Person
175 sg:person.0655053204.41 schema:affiliation https://www.grid.ac/institutes/grid.263826.b
176 schema:familyName Yang
177 schema:givenName Guanyu
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0655053204.41
179 rdf:type schema:Person
180 sg:person.0754301407.95 schema:affiliation https://www.grid.ac/institutes/grid.463996.7
181 schema:familyName Coatrieux
182 schema:givenName Jean-Louis
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754301407.95
184 rdf:type schema:Person
185 sg:pub.10.1007/3-540-45053-x_13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036628291
186 https://doi.org/10.1007/3-540-45053-x_13
187 rdf:type schema:CreativeWork
188 sg:pub.10.1007/bf00336998 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011712804
189 https://doi.org/10.1007/bf00336998
190 rdf:type schema:CreativeWork
191 sg:pub.10.1007/s00335-011-9382-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1035742110
192 https://doi.org/10.1007/s00335-011-9382-y
193 rdf:type schema:CreativeWork
194 sg:pub.10.1007/s004010000308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027611767
195 https://doi.org/10.1007/s004010000308
196 rdf:type schema:CreativeWork
197 sg:pub.10.1007/s10334-004-0032-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018013211
198 https://doi.org/10.1007/s10334-004-0032-1
199 rdf:type schema:CreativeWork
200 sg:pub.10.1007/s11548-012-0810-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036409218
201 https://doi.org/10.1007/s11548-012-0810-6
202 rdf:type schema:CreativeWork
203 sg:pub.10.1023/a:1026553619983 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036231609
204 https://doi.org/10.1023/a:1026553619983
205 rdf:type schema:CreativeWork
206 sg:pub.10.1038/334154a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036951697
207 https://doi.org/10.1038/334154a0
208 rdf:type schema:CreativeWork
209 sg:pub.10.1038/scientificamerican0475-34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056527023
210 https://doi.org/10.1038/scientificamerican0475-34
211 rdf:type schema:CreativeWork
212 sg:pub.10.1186/1741-7015-11-77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035142884
213 https://doi.org/10.1186/1741-7015-11-77
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1002/jsfa.1841 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024239767
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1002/mus.880111008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000486307
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1016/0022-510x(90)90095-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008382739
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1016/0042-6989(91)90211-m schema:sameAs https://app.dimensions.ai/details/publication/pub.1017317377
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1016/0730-725x(87)90003-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025400846
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1016/0730-725x(93)90201-n schema:sameAs https://app.dimensions.ai/details/publication/pub.1029103250
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1016/0730-725x(93)90202-o schema:sameAs https://app.dimensions.ai/details/publication/pub.1004787593
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1016/0730-725x(93)90205-r schema:sameAs https://app.dimensions.ai/details/publication/pub.1033543716
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1016/j.bpj.2014.04.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024125030
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1016/j.cmpb.2008.08.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042334862
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1016/j.mri.2005.10.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024472554
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1016/j.nmd.2004.11.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018142547
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1016/j.nmd.2007.03.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033681075
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1016/j.nmd.2013.10.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015233062
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1016/j.visres.2004.03.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002510306
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1016/j.visres.2007.01.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047947910
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1016/j.visres.2010.11.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033651973
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1016/s0146-664x(75)80008-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027475370
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1016/s0730-725x(99)00066-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018906367
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1053/jcpa.2001.0526 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023503870
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1109/emb.2007.906026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061270280
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1109/tip.2010.2062195 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061642610
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1109/tit.1962.1057698 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061645802
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1109/tsmc.1973.4309314 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061792707
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1109/tsmc.1976.5408777 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061792978
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1111/cpf.12107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001821675
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1117/1.jbo.18.6.066017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052698654
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1118/1.595535 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038765597
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1145/218380.218446 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029683430
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1364/josaa.3.000868 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065163819
274 rdf:type schema:CreativeWork
275 https://doi.org/10.1364/josaa.7.000923 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065166332
276 rdf:type schema:CreativeWork
277 https://doi.org/10.15579/gcsr.vol1.ch3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088444388
278 rdf:type schema:CreativeWork
279 https://www.grid.ac/institutes/grid.263826.b schema:alternateName Southeast University
280 schema:name LIST, Southeast University, Nanjing, China
281 rdf:type schema:Organization
282 https://www.grid.ac/institutes/grid.410368.8 schema:alternateName University of Rennes 1
283 schema:name PRISM-BioSCANs, University of Rennes, Rennes, France
284 rdf:type schema:Organization
285 https://www.grid.ac/institutes/grid.416266.1 schema:alternateName Ninewells Hospital
286 schema:name Ninewells Hosp. and Medical School, Dundee, Scotland, United Kingdom
287 rdf:type schema:Organization
288 https://www.grid.ac/institutes/grid.418250.a schema:alternateName Institute of Myology
289 schema:name Institute of Myology, NMR laboratory, Paris, France
290 rdf:type schema:Organization
291 https://www.grid.ac/institutes/grid.426549.8 schema:alternateName United Institute of Informatics Problems
292 schema:name Lab. Of Mathematical Cybernetics, UIIP, Belorussian Academy of Science, Minsk, Belarus
293 rdf:type schema:Organization
294 https://www.grid.ac/institutes/grid.446127.2 schema:alternateName Bialystok University of Technology
295 schema:name Faculty of Computer Science, Bialystok University of Technology, Bialystok, Poland
296 rdf:type schema:Organization
297 https://www.grid.ac/institutes/grid.463996.7 schema:alternateName Laboratoire Traitement du Signal et de l'Image
298 schema:name LTSI, INSERM, University of Rennes, Rennes, France
299 rdf:type schema:Organization
300 https://www.grid.ac/institutes/grid.5583.b schema:alternateName Atomic Energy and Alternative Energies Commission
301 schema:name CEA, I2BM, MIRCen, NMR laboratory, Paris, France
302 Institute of Myology, NMR laboratory, Paris, France
303 rdf:type schema:Organization
304 https://www.grid.ac/institutes/grid.7427.6 schema:alternateName University of Beira Interior
305 schema:name University da Beira Interior, Covilha, Portugal
306 rdf:type schema:Organization
307 https://www.grid.ac/institutes/grid.9224.d schema:alternateName University of Seville
308 schema:name Instituto de Biomedicina, CSCIC Universidad de Sevilla, Sevilla, Spain
309 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...