Cauchy’s almost forgotten Lagrangian formulation of the Euler equation for 3D incompressible flow View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-09

AUTHORS

Uriel Frisch, Barbara Villone

ABSTRACT

Two prized papers, one by Augustin Cauchy in 1815, presented to the French Academy and the other by Hermann Hankel in 1861, presented to Göttingen University, contain major discoveries on vorticity dynamics whose impact is now quickly increasing. Cauchy found a Lagrangian formulation of 3D ideal incompressible flow in terms of three invariants that generalize to three dimensions the now well-known law of conservation of vorticity along fluid particle trajectories for two-dimensional flow. This has very recently been used to prove analyticity in time of fluid particle trajectories for 3D incompressible Euler flow and can be extended to compressible flow, in particular to cosmological dark matter. Hankel showed that Cauchy’s formulation gives a very simple Lagrangian derivation of the Helmholtz vorticity-flux invariants and, in the middle of the proof, derived an intermediate result which is the conservation of the circulation of the velocity around a closed contour moving with the fluid. This circulation theorem was to be rediscovered independently by William Thomson (Kelvin) in 1869. Cauchy’s invariants were only occasionally cited in the 19th century – besides Hankel, foremost by George Stokes and Maurice Lévy – and even less so in the 20th until they were rediscovered via Emmy Noether’s theorem in the late 1960, but reattributed to Cauchy only at the end of the 20th century by Russian scientists. More... »

PAGES

325-351

Identifiers

URI

http://scigraph.springernature.com/pub.10.1140/epjh/e2014-50016-6

DOI

http://dx.doi.org/10.1140/epjh/e2014-50016-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1014967498


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "French National Centre for Scientific Research", 
          "id": "https://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "UNS, CNRS, OCA, Lab. Lagrange, B.P. 4229, 06304, Nice Cedex 4, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Frisch", 
        "givenName": "Uriel", 
        "id": "sg:person.011615073661.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011615073661.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Osservatorio Astrofisico di Torino", 
          "id": "https://www.grid.ac/institutes/grid.436940.c", 
          "name": [
            "INAF, Osservatorio Astrofisico di Torino, Via Osservatorio, 20, 10025, Pino Torinese, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Villone", 
        "givenName": "Barbara", 
        "id": "sg:person.015640522045.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015640522045.38"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01475456", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002083496", 
          "https://doi.org/10.1007/bf01475456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01475456", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002083496", 
          "https://doi.org/10.1007/bf01475456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.fluid.010908.165210", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004650546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.fl.20.010188.001301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006342832"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-2966.2003.07106.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006454156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03091928908219531", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007324716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02122398", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010070820", 
          "https://doi.org/10.1007/bf02122398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/mnras/254.4.729", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011483833"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/crll.1868.68.286", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012192140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2991/jnmp.2006.13.1.6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016352658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1139/p63-216", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016768742"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0080456800028179", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021607554"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01474610", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023371414", 
          "https://doi.org/10.1007/bf01474610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0065-2156(07)41003-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025906694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02547354", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026181143", 
          "https://doi.org/10.1007/bf02547354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00908966", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033442940", 
          "https://doi.org/10.1007/bf00908966"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsta.1990.0160", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038797503"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02104927", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039206701", 
          "https://doi.org/10.1007/bf02104927"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01474611", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040615903", 
          "https://doi.org/10.1007/bf01474611"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01474611", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040615903", 
          "https://doi.org/10.1007/bf01474611"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(96)00472-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044132994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/crll.1858.55.25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044609317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physd.2007.08.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045452954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physd.2008.05.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046037008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1874-5792(03)80010-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047757796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00220-013-1848-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052252255", 
          "https://doi.org/10.1007/s00220-013-1848-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-2996-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052587790", 
          "https://doi.org/10.1007/978-1-4612-2996-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-2996-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052587790", 
          "https://doi.org/10.1007/978-1-4612-2996-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112001005195", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053817278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/jfm.2014.221", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053918269"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/jfm.2014.221", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053918269"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/jphys:01978003905044100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056989975"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1706053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057775283"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1706859", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057776033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2807692", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057869664"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1070/pu1997v040n11abeh000304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058172817"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/170728", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058502018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2690275", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070062073"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1887/0750308664/b1111c11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1088364342"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/psapm/018/9923", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1089200269"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511734939", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098665022"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511551697", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098708534"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-09", 
    "datePublishedReg": "2014-09-01", 
    "description": "Two prized papers, one by Augustin Cauchy in 1815, presented to the French Academy and the other by Hermann Hankel in 1861, presented to G\u00f6ttingen University, contain major discoveries on vorticity dynamics whose impact is now quickly increasing. Cauchy found a Lagrangian formulation of 3D ideal incompressible flow in terms of three invariants that generalize to three dimensions the now well-known law of conservation of vorticity along fluid particle trajectories for two-dimensional flow. This has very recently been used to prove analyticity in time of fluid particle trajectories for 3D incompressible Euler flow and can be extended to compressible flow, in particular to cosmological dark matter. Hankel showed that Cauchy\u2019s formulation gives a very simple Lagrangian derivation of the Helmholtz vorticity-flux invariants and, in the middle of the proof, derived an intermediate result which is the conservation of the circulation of the velocity around a closed contour moving with the fluid. This circulation theorem was to be rediscovered independently by William Thomson (Kelvin) in 1869. Cauchy\u2019s invariants were only occasionally cited in the 19th century \u2013 besides Hankel, foremost by George Stokes and Maurice L\u00e9vy \u2013 and even less so in the 20th until they were rediscovered via Emmy Noether\u2019s theorem in the late 1960, but reattributed to Cauchy only at the end of the 20th century by Russian scientists.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1140/epjh/e2014-50016-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136311", 
        "issn": [
          "2102-6459", 
          "2102-6467"
        ], 
        "name": "The European Physical Journal H", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "39"
      }
    ], 
    "name": "Cauchy\u2019s almost forgotten Lagrangian formulation of the Euler equation for 3D incompressible flow", 
    "pagination": "325-351", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "474f7800bfa8a45abe602837703ccaf76b0723528382b1d4ab0935b39e875d08"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1140/epjh/e2014-50016-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1014967498"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1140/epjh/e2014-50016-6", 
      "https://app.dimensions.ai/details/publication/pub.1014967498"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000504.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1140%2Fepjh%2Fe2014-50016-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epjh/e2014-50016-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epjh/e2014-50016-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epjh/e2014-50016-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epjh/e2014-50016-6'


 

This table displays all metadata directly associated to this object as RDF triples.

194 TRIPLES      21 PREDICATES      65 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1140/epjh/e2014-50016-6 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author N93dc3ac49f5b40df8f185ab34de65c0c
4 schema:citation sg:pub.10.1007/978-1-4612-2996-4
5 sg:pub.10.1007/bf00908966
6 sg:pub.10.1007/bf01474610
7 sg:pub.10.1007/bf01474611
8 sg:pub.10.1007/bf01475456
9 sg:pub.10.1007/bf02104927
10 sg:pub.10.1007/bf02122398
11 sg:pub.10.1007/bf02547354
12 sg:pub.10.1007/s00220-013-1848-1
13 https://doi.org/10.1016/0375-9601(96)00472-0
14 https://doi.org/10.1016/j.physd.2007.08.003
15 https://doi.org/10.1016/j.physd.2008.05.006
16 https://doi.org/10.1016/s0065-2156(07)41003-1
17 https://doi.org/10.1016/s1874-5792(03)80010-1
18 https://doi.org/10.1017/cbo9780511551697
19 https://doi.org/10.1017/cbo9780511734939
20 https://doi.org/10.1017/jfm.2014.221
21 https://doi.org/10.1017/s0022112001005195
22 https://doi.org/10.1017/s0080456800028179
23 https://doi.org/10.1046/j.1365-2966.2003.07106.x
24 https://doi.org/10.1051/jphys:01978003905044100
25 https://doi.org/10.1063/1.1706053
26 https://doi.org/10.1063/1.1706859
27 https://doi.org/10.1063/1.2807692
28 https://doi.org/10.1070/pu1997v040n11abeh000304
29 https://doi.org/10.1080/03091928908219531
30 https://doi.org/10.1086/170728
31 https://doi.org/10.1090/psapm/018/9923
32 https://doi.org/10.1093/mnras/254.4.729
33 https://doi.org/10.1098/rsta.1990.0160
34 https://doi.org/10.1139/p63-216
35 https://doi.org/10.1146/annurev.fl.20.010188.001301
36 https://doi.org/10.1146/annurev.fluid.010908.165210
37 https://doi.org/10.1515/crll.1858.55.25
38 https://doi.org/10.1515/crll.1868.68.286
39 https://doi.org/10.1887/0750308664/b1111c11
40 https://doi.org/10.2307/2690275
41 https://doi.org/10.2991/jnmp.2006.13.1.6
42 schema:datePublished 2014-09
43 schema:datePublishedReg 2014-09-01
44 schema:description Two prized papers, one by Augustin Cauchy in 1815, presented to the French Academy and the other by Hermann Hankel in 1861, presented to Göttingen University, contain major discoveries on vorticity dynamics whose impact is now quickly increasing. Cauchy found a Lagrangian formulation of 3D ideal incompressible flow in terms of three invariants that generalize to three dimensions the now well-known law of conservation of vorticity along fluid particle trajectories for two-dimensional flow. This has very recently been used to prove analyticity in time of fluid particle trajectories for 3D incompressible Euler flow and can be extended to compressible flow, in particular to cosmological dark matter. Hankel showed that Cauchy’s formulation gives a very simple Lagrangian derivation of the Helmholtz vorticity-flux invariants and, in the middle of the proof, derived an intermediate result which is the conservation of the circulation of the velocity around a closed contour moving with the fluid. This circulation theorem was to be rediscovered independently by William Thomson (Kelvin) in 1869. Cauchy’s invariants were only occasionally cited in the 19th century – besides Hankel, foremost by George Stokes and Maurice Lévy – and even less so in the 20th until they were rediscovered via Emmy Noether’s theorem in the late 1960, but reattributed to Cauchy only at the end of the 20th century by Russian scientists.
45 schema:genre research_article
46 schema:inLanguage en
47 schema:isAccessibleForFree true
48 schema:isPartOf Na87ed6ff4d604e8c874ed9a836262078
49 Nea57a4bf1c8b42aa9d52e345f74da0b3
50 sg:journal.1136311
51 schema:name Cauchy’s almost forgotten Lagrangian formulation of the Euler equation for 3D incompressible flow
52 schema:pagination 325-351
53 schema:productId N389dcb7eae5041a787a1897839eac438
54 N8daed044991c4bf5bbe522c258a6a788
55 Naa06b6b97f524e26bb73f743a90996b9
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014967498
57 https://doi.org/10.1140/epjh/e2014-50016-6
58 schema:sdDatePublished 2019-04-10T19:07
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher Na3505ed32007416e8c796fc6f7a7101b
61 schema:url http://link.springer.com/10.1140%2Fepjh%2Fe2014-50016-6
62 sgo:license sg:explorer/license/
63 sgo:sdDataset articles
64 rdf:type schema:ScholarlyArticle
65 N263950f2a93c40fd95828a5094289aee rdf:first sg:person.015640522045.38
66 rdf:rest rdf:nil
67 N389dcb7eae5041a787a1897839eac438 schema:name doi
68 schema:value 10.1140/epjh/e2014-50016-6
69 rdf:type schema:PropertyValue
70 N8daed044991c4bf5bbe522c258a6a788 schema:name readcube_id
71 schema:value 474f7800bfa8a45abe602837703ccaf76b0723528382b1d4ab0935b39e875d08
72 rdf:type schema:PropertyValue
73 N93dc3ac49f5b40df8f185ab34de65c0c rdf:first sg:person.011615073661.47
74 rdf:rest N263950f2a93c40fd95828a5094289aee
75 Na3505ed32007416e8c796fc6f7a7101b schema:name Springer Nature - SN SciGraph project
76 rdf:type schema:Organization
77 Na87ed6ff4d604e8c874ed9a836262078 schema:volumeNumber 39
78 rdf:type schema:PublicationVolume
79 Naa06b6b97f524e26bb73f743a90996b9 schema:name dimensions_id
80 schema:value pub.1014967498
81 rdf:type schema:PropertyValue
82 Nea57a4bf1c8b42aa9d52e345f74da0b3 schema:issueNumber 3
83 rdf:type schema:PublicationIssue
84 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
85 schema:name Engineering
86 rdf:type schema:DefinedTerm
87 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
88 schema:name Interdisciplinary Engineering
89 rdf:type schema:DefinedTerm
90 sg:journal.1136311 schema:issn 2102-6459
91 2102-6467
92 schema:name The European Physical Journal H
93 rdf:type schema:Periodical
94 sg:person.011615073661.47 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
95 schema:familyName Frisch
96 schema:givenName Uriel
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011615073661.47
98 rdf:type schema:Person
99 sg:person.015640522045.38 schema:affiliation https://www.grid.ac/institutes/grid.436940.c
100 schema:familyName Villone
101 schema:givenName Barbara
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015640522045.38
103 rdf:type schema:Person
104 sg:pub.10.1007/978-1-4612-2996-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052587790
105 https://doi.org/10.1007/978-1-4612-2996-4
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/bf00908966 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033442940
108 https://doi.org/10.1007/bf00908966
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/bf01474610 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023371414
111 https://doi.org/10.1007/bf01474610
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/bf01474611 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040615903
114 https://doi.org/10.1007/bf01474611
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/bf01475456 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002083496
117 https://doi.org/10.1007/bf01475456
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/bf02104927 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039206701
120 https://doi.org/10.1007/bf02104927
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/bf02122398 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010070820
123 https://doi.org/10.1007/bf02122398
124 rdf:type schema:CreativeWork
125 sg:pub.10.1007/bf02547354 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026181143
126 https://doi.org/10.1007/bf02547354
127 rdf:type schema:CreativeWork
128 sg:pub.10.1007/s00220-013-1848-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052252255
129 https://doi.org/10.1007/s00220-013-1848-1
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/0375-9601(96)00472-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044132994
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.physd.2007.08.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045452954
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.physd.2008.05.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046037008
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/s0065-2156(07)41003-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025906694
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/s1874-5792(03)80010-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047757796
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1017/cbo9780511551697 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098708534
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1017/cbo9780511734939 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098665022
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1017/jfm.2014.221 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053918269
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1017/s0022112001005195 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053817278
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1017/s0080456800028179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021607554
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1046/j.1365-2966.2003.07106.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1006454156
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1051/jphys:01978003905044100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056989975
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1063/1.1706053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057775283
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1063/1.1706859 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057776033
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1063/1.2807692 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057869664
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1070/pu1997v040n11abeh000304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058172817
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1080/03091928908219531 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007324716
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1086/170728 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058502018
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1090/psapm/018/9923 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089200269
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1093/mnras/254.4.729 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011483833
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1098/rsta.1990.0160 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038797503
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1139/p63-216 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016768742
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1146/annurev.fl.20.010188.001301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006342832
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1146/annurev.fluid.010908.165210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004650546
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1515/crll.1858.55.25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044609317
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1515/crll.1868.68.286 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012192140
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1887/0750308664/b1111c11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088364342
184 rdf:type schema:CreativeWork
185 https://doi.org/10.2307/2690275 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070062073
186 rdf:type schema:CreativeWork
187 https://doi.org/10.2991/jnmp.2006.13.1.6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016352658
188 rdf:type schema:CreativeWork
189 https://www.grid.ac/institutes/grid.436940.c schema:alternateName Osservatorio Astrofisico di Torino
190 schema:name INAF, Osservatorio Astrofisico di Torino, Via Osservatorio, 20, 10025, Pino Torinese, Italy
191 rdf:type schema:Organization
192 https://www.grid.ac/institutes/grid.4444.0 schema:alternateName French National Centre for Scientific Research
193 schema:name UNS, CNRS, OCA, Lab. Lagrange, B.P. 4229, 06304, Nice Cedex 4, France
194 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...