Particle-laden two-dimensional elastic turbulence View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-10-02

AUTHORS

Himani Garg, Enrico Calzavarini, Gilmar Mompean, Stefano Berti

ABSTRACT

.The aggregation properties of heavy inertial particles in the elastic turbulence regime of an Oldroyd-B fluid with periodic Kolmogorov mean flow are investigated by means of extensive numerical simulations in two dimensions. Both the small- and large-scale features of the resulting inhomogeneous particle distribution are examined, focusing on their connection with the properties of the advecting viscoelastic flow. We find that particles preferentially accumulate on thin highly elastic propagating structures and that this effect is the largest for intermediate values of particle inertia. We provide a quantitative characterization of this phenomenon that allows to relate it to the accumulation of particles in filamentary highly strained flow regions producing clusters of correlation dimension close to 1. At larger scales, particles are found to undergo turbophoretic-like segregation. Indeed, our results indicate a close relationship between the profiles of particle density and fluid velocity fluctuations. The large-scale inhomogeneity of the particle distribution is interpreted in the framework of a model derived in the limit of small, but finite, particle inertia. The qualitative characteristics of different observables are, to a good extent, independent of the flow elasticity. When increased, the latter is found, however, to slightly reduce the globally averaged degree of turbophoretic unmixing.Graphical abstract More... »

PAGES

115

Identifiers

URI

http://scigraph.springernature.com/pub.10.1140/epje/i2018-11726-4

DOI

http://dx.doi.org/10.1140/epje/i2018-11726-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107301408

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30267232


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Universit\u00e9 de Lille, Unit\u00e9 de M\u00e9canique de Lille, UML EA 7512, F-59000, Lille, France", 
          "id": "http://www.grid.ac/institutes/grid.503422.2", 
          "name": [
            "Universit\u00e9 de Lille, Unit\u00e9 de M\u00e9canique de Lille, UML EA 7512, F-59000, Lille, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Garg", 
        "givenName": "Himani", 
        "id": "sg:person.07637263274.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07637263274.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universit\u00e9 de Lille, Unit\u00e9 de M\u00e9canique de Lille, UML EA 7512, F-59000, Lille, France", 
          "id": "http://www.grid.ac/institutes/grid.503422.2", 
          "name": [
            "Universit\u00e9 de Lille, Unit\u00e9 de M\u00e9canique de Lille, UML EA 7512, F-59000, Lille, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Calzavarini", 
        "givenName": "Enrico", 
        "id": "sg:person.01115443017.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115443017.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universit\u00e9 de Lille, Unit\u00e9 de M\u00e9canique de Lille, UML EA 7512, F-59000, Lille, France", 
          "id": "http://www.grid.ac/institutes/grid.503422.2", 
          "name": [
            "Universit\u00e9 de Lille, Unit\u00e9 de M\u00e9canique de Lille, UML EA 7512, F-59000, Lille, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mompean", 
        "givenName": "Gilmar", 
        "id": "sg:person.016135524127.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016135524127.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universit\u00e9 de Lille, Unit\u00e9 de M\u00e9canique de Lille, UML EA 7512, F-59000, Lille, France", 
          "id": "http://www.grid.ac/institutes/grid.503422.2", 
          "name": [
            "Universit\u00e9 de Lille, Unit\u00e9 de M\u00e9canique de Lille, UML EA 7512, F-59000, Lille, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Berti", 
        "givenName": "Stefano", 
        "id": "sg:person.0722717565.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0722717565.41"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/s41467-017-00389-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091465429", 
          "https://doi.org/10.1038/s41467-017-00389-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35011019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037654713", 
          "https://doi.org/10.1038/35011019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature00983", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017519688", 
          "https://doi.org/10.1038/nature00983"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35073524", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018487134", 
          "https://doi.org/10.1038/35073524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjp/i2018-11865-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100857163", 
          "https://doi.org/10.1140/epjp/i2018-11865-7"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-10-02", 
    "datePublishedReg": "2018-10-02", 
    "description": "Abstract.The aggregation properties of heavy inertial particles in the elastic turbulence regime of an Oldroyd-B fluid with periodic Kolmogorov mean flow are investigated by means of extensive numerical simulations in two dimensions. Both the small- and large-scale features of the resulting inhomogeneous particle distribution are examined, focusing on their connection with the properties of the advecting viscoelastic flow. We find that particles preferentially accumulate on thin highly elastic propagating structures and that this effect is the largest for intermediate values of particle inertia. We provide a quantitative characterization of this phenomenon that allows to relate it to the accumulation of particles in filamentary highly strained flow regions producing clusters of correlation dimension close to 1. At larger scales, particles are found to undergo turbophoretic-like segregation. Indeed, our results indicate a close relationship between the profiles of particle density and fluid velocity fluctuations. The large-scale inhomogeneity of the particle distribution is interpreted in the framework of a model derived in the limit of small, but finite, particle inertia. The qualitative characteristics of different observables are, to a good extent, independent of the flow elasticity. When increased, the latter is found, however, to slightly reduce the globally averaged degree of turbophoretic unmixing.Graphical abstract", 
    "genre": "article", 
    "id": "sg:pub.10.1140/epje/i2018-11726-4", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1358273", 
        "issn": [
          "1292-8941", 
          "1292-895X"
        ], 
        "name": "The European Physical Journal E", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "41"
      }
    ], 
    "keywords": [
      "particle inertia", 
      "elastic turbulence regime", 
      "particle distribution", 
      "fluid velocity fluctuations", 
      "heavy inertial particles", 
      "Particle-laden", 
      "inhomogeneous particle distribution", 
      "elastic turbulence", 
      "accumulation of particles", 
      "inertial particles", 
      "velocity fluctuations", 
      "viscoelastic flow", 
      "flow region", 
      "mean flow", 
      "numerical simulations", 
      "flow elasticity", 
      "turbulence regime", 
      "particle density", 
      "large-scale inhomogeneities", 
      "extensive numerical simulations", 
      "particles", 
      "large-scale features", 
      "quantitative characterization", 
      "flow", 
      "inertia", 
      "turbulence", 
      "Oldroyd", 
      "large scale", 
      "properties", 
      "correlation dimension", 
      "good extent", 
      "simulations", 
      "inhomogeneity", 
      "elasticity", 
      "distribution", 
      "fluid", 
      "density", 
      "intermediate values", 
      "characteristics", 
      "structure", 
      "regime", 
      "characterization", 
      "qualitative characteristics", 
      "segregation", 
      "fluctuations", 
      "phenomenon", 
      "unmixing", 
      "dimensions", 
      "model", 
      "limit", 
      "results", 
      "profile", 
      "finite", 
      "scale", 
      "means", 
      "effect", 
      "values", 
      "region", 
      "degree", 
      "features", 
      "connection", 
      "framework", 
      "aggregation properties", 
      "extent", 
      "different observables", 
      "close relationship", 
      "relationship", 
      "accumulation", 
      "observables", 
      "clusters", 
      "periodic Kolmogorov mean flow", 
      "Kolmogorov mean flow", 
      "strained flow regions", 
      "turbophoretic-like segregation", 
      "turbophoretic unmixing", 
      "Graphical abstract Particle-laden", 
      "abstract Particle-laden", 
      "two-dimensional elastic turbulence"
    ], 
    "name": "Particle-laden two-dimensional elastic turbulence", 
    "pagination": "115", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107301408"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1140/epje/i2018-11726-4"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30267232"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1140/epje/i2018-11726-4", 
      "https://app.dimensions.ai/details/publication/pub.1107301408"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_765.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1140/epje/i2018-11726-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epje/i2018-11726-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epje/i2018-11726-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epje/i2018-11726-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epje/i2018-11726-4'


 

This table displays all metadata directly associated to this object as RDF triples.

181 TRIPLES      22 PREDICATES      109 URIs      96 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1140/epje/i2018-11726-4 schema:about anzsrc-for:01
2 anzsrc-for:02
3 schema:author Nc0d9c3b657a840038b5829e283c811f4
4 schema:citation sg:pub.10.1038/35011019
5 sg:pub.10.1038/35073524
6 sg:pub.10.1038/nature00983
7 sg:pub.10.1038/s41467-017-00389-8
8 sg:pub.10.1140/epjp/i2018-11865-7
9 schema:datePublished 2018-10-02
10 schema:datePublishedReg 2018-10-02
11 schema:description Abstract.The aggregation properties of heavy inertial particles in the elastic turbulence regime of an Oldroyd-B fluid with periodic Kolmogorov mean flow are investigated by means of extensive numerical simulations in two dimensions. Both the small- and large-scale features of the resulting inhomogeneous particle distribution are examined, focusing on their connection with the properties of the advecting viscoelastic flow. We find that particles preferentially accumulate on thin highly elastic propagating structures and that this effect is the largest for intermediate values of particle inertia. We provide a quantitative characterization of this phenomenon that allows to relate it to the accumulation of particles in filamentary highly strained flow regions producing clusters of correlation dimension close to 1. At larger scales, particles are found to undergo turbophoretic-like segregation. Indeed, our results indicate a close relationship between the profiles of particle density and fluid velocity fluctuations. The large-scale inhomogeneity of the particle distribution is interpreted in the framework of a model derived in the limit of small, but finite, particle inertia. The qualitative characteristics of different observables are, to a good extent, independent of the flow elasticity. When increased, the latter is found, however, to slightly reduce the globally averaged degree of turbophoretic unmixing.Graphical abstract
12 schema:genre article
13 schema:inLanguage en
14 schema:isAccessibleForFree true
15 schema:isPartOf N53b525b6569448ec8cee9c9936a3fd01
16 N9e1d3f421e72459691eb86efda294930
17 sg:journal.1358273
18 schema:keywords Graphical abstract Particle-laden
19 Kolmogorov mean flow
20 Oldroyd
21 Particle-laden
22 abstract Particle-laden
23 accumulation
24 accumulation of particles
25 aggregation properties
26 characteristics
27 characterization
28 close relationship
29 clusters
30 connection
31 correlation dimension
32 degree
33 density
34 different observables
35 dimensions
36 distribution
37 effect
38 elastic turbulence
39 elastic turbulence regime
40 elasticity
41 extensive numerical simulations
42 extent
43 features
44 finite
45 flow
46 flow elasticity
47 flow region
48 fluctuations
49 fluid
50 fluid velocity fluctuations
51 framework
52 good extent
53 heavy inertial particles
54 inertia
55 inertial particles
56 inhomogeneity
57 inhomogeneous particle distribution
58 intermediate values
59 large scale
60 large-scale features
61 large-scale inhomogeneities
62 limit
63 mean flow
64 means
65 model
66 numerical simulations
67 observables
68 particle density
69 particle distribution
70 particle inertia
71 particles
72 periodic Kolmogorov mean flow
73 phenomenon
74 profile
75 properties
76 qualitative characteristics
77 quantitative characterization
78 regime
79 region
80 relationship
81 results
82 scale
83 segregation
84 simulations
85 strained flow regions
86 structure
87 turbophoretic unmixing
88 turbophoretic-like segregation
89 turbulence
90 turbulence regime
91 two-dimensional elastic turbulence
92 unmixing
93 values
94 velocity fluctuations
95 viscoelastic flow
96 schema:name Particle-laden two-dimensional elastic turbulence
97 schema:pagination 115
98 schema:productId N12d270286c194e43a2fce8a16edcf0bb
99 N3e995436dead4b2d8095a7bdf610aafb
100 N65b6208ae4834f1d8f4b19b235f6ac91
101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107301408
102 https://doi.org/10.1140/epje/i2018-11726-4
103 schema:sdDatePublished 2021-11-01T18:32
104 schema:sdLicense https://scigraph.springernature.com/explorer/license/
105 schema:sdPublisher Nd04a8f65fe8241debf617a5ab5cd7910
106 schema:url https://doi.org/10.1140/epje/i2018-11726-4
107 sgo:license sg:explorer/license/
108 sgo:sdDataset articles
109 rdf:type schema:ScholarlyArticle
110 N12d270286c194e43a2fce8a16edcf0bb schema:name dimensions_id
111 schema:value pub.1107301408
112 rdf:type schema:PropertyValue
113 N3e995436dead4b2d8095a7bdf610aafb schema:name pubmed_id
114 schema:value 30267232
115 rdf:type schema:PropertyValue
116 N53b525b6569448ec8cee9c9936a3fd01 schema:volumeNumber 41
117 rdf:type schema:PublicationVolume
118 N60dbbf82910f48a99ee03cf6751e5d84 rdf:first sg:person.0722717565.41
119 rdf:rest rdf:nil
120 N61d9367f0ae344aabd7b5a33012f3e95 rdf:first sg:person.016135524127.76
121 rdf:rest N60dbbf82910f48a99ee03cf6751e5d84
122 N65b6208ae4834f1d8f4b19b235f6ac91 schema:name doi
123 schema:value 10.1140/epje/i2018-11726-4
124 rdf:type schema:PropertyValue
125 N84758dda341246a0a3df8821fc644270 rdf:first sg:person.01115443017.19
126 rdf:rest N61d9367f0ae344aabd7b5a33012f3e95
127 N9e1d3f421e72459691eb86efda294930 schema:issueNumber 10
128 rdf:type schema:PublicationIssue
129 Nc0d9c3b657a840038b5829e283c811f4 rdf:first sg:person.07637263274.97
130 rdf:rest N84758dda341246a0a3df8821fc644270
131 Nd04a8f65fe8241debf617a5ab5cd7910 schema:name Springer Nature - SN SciGraph project
132 rdf:type schema:Organization
133 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
134 schema:name Mathematical Sciences
135 rdf:type schema:DefinedTerm
136 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
137 schema:name Physical Sciences
138 rdf:type schema:DefinedTerm
139 sg:journal.1358273 schema:issn 1292-8941
140 1292-895X
141 schema:name The European Physical Journal E
142 schema:publisher Springer Nature
143 rdf:type schema:Periodical
144 sg:person.01115443017.19 schema:affiliation grid-institutes:grid.503422.2
145 schema:familyName Calzavarini
146 schema:givenName Enrico
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115443017.19
148 rdf:type schema:Person
149 sg:person.016135524127.76 schema:affiliation grid-institutes:grid.503422.2
150 schema:familyName Mompean
151 schema:givenName Gilmar
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016135524127.76
153 rdf:type schema:Person
154 sg:person.0722717565.41 schema:affiliation grid-institutes:grid.503422.2
155 schema:familyName Berti
156 schema:givenName Stefano
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0722717565.41
158 rdf:type schema:Person
159 sg:person.07637263274.97 schema:affiliation grid-institutes:grid.503422.2
160 schema:familyName Garg
161 schema:givenName Himani
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07637263274.97
163 rdf:type schema:Person
164 sg:pub.10.1038/35011019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037654713
165 https://doi.org/10.1038/35011019
166 rdf:type schema:CreativeWork
167 sg:pub.10.1038/35073524 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018487134
168 https://doi.org/10.1038/35073524
169 rdf:type schema:CreativeWork
170 sg:pub.10.1038/nature00983 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017519688
171 https://doi.org/10.1038/nature00983
172 rdf:type schema:CreativeWork
173 sg:pub.10.1038/s41467-017-00389-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091465429
174 https://doi.org/10.1038/s41467-017-00389-8
175 rdf:type schema:CreativeWork
176 sg:pub.10.1140/epjp/i2018-11865-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100857163
177 https://doi.org/10.1140/epjp/i2018-11865-7
178 rdf:type schema:CreativeWork
179 grid-institutes:grid.503422.2 schema:alternateName Université de Lille, Unité de Mécanique de Lille, UML EA 7512, F-59000, Lille, France
180 schema:name Université de Lille, Unité de Mécanique de Lille, UML EA 7512, F-59000, Lille, France
181 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...