Active chiral fluids View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-09

AUTHORS

S. Fürthauer, M. Strempel, S. W. Grill, F. Jülicher

ABSTRACT

Active processes in biological systems often exhibit chiral asymmetries. Examples are the chirality of cytoskeletal filaments which interact with motor proteins, the chirality of the beat of cilia and flagella as well as the helical trajectories of many biological microswimmers. Here, we derive constitutive material equations for active fluids which account for the effects of active chiral processes. We identify active contributions to the antisymmetric part of the stress as well as active angular momentum fluxes. We discuss four types of elementary chiral motors and their effects on a surrounding fluid. We show that large-scale chiral flows can result from the collective behavior of such motors even in cases where isolated motors do not create a hydrodynamic far field. More... »

PAGES

89

Identifiers

URI

http://scigraph.springernature.com/pub.10.1140/epje/i2012-12089-6

DOI

http://dx.doi.org/10.1140/epje/i2012-12089-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1029193538

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/23001784


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Actin Cytoskeleton", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hydrodynamics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Kinetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Molecular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Molecular Conformation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Torque", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Max Planck Institute of Molecular Cell Biology and Genetics", 
          "id": "https://www.grid.ac/institutes/grid.419537.d", 
          "name": [
            "Max Planck Institute for the Physics of Complex Systems, N\u00f6thnitzer Stra\u00dfe 38, 01187, Dresden, Germany", 
            "Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstra\u00dfe 108, 01307, Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "F\u00fcrthauer", 
        "givenName": "S.", 
        "id": "sg:person.0744464311.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744464311.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute of Molecular Cell Biology and Genetics", 
          "id": "https://www.grid.ac/institutes/grid.419537.d", 
          "name": [
            "Max Planck Institute for the Physics of Complex Systems, N\u00f6thnitzer Stra\u00dfe 38, 01187, Dresden, Germany", 
            "Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstra\u00dfe 108, 01307, Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Strempel", 
        "givenName": "M.", 
        "id": "sg:person.01012577511.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01012577511.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute of Molecular Cell Biology and Genetics", 
          "id": "https://www.grid.ac/institutes/grid.419537.d", 
          "name": [
            "Max Planck Institute for the Physics of Complex Systems, N\u00f6thnitzer Stra\u00dfe 38, 01187, Dresden, Germany", 
            "Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstra\u00dfe 108, 01307, Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Grill", 
        "givenName": "S. W.", 
        "id": "sg:person.0661000612.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661000612.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for the Physics of Complex Systems", 
          "id": "https://www.grid.ac/institutes/grid.419560.f", 
          "name": [
            "Max Planck Institute for the Physics of Complex Systems, N\u00f6thnitzer Stra\u00dfe 38, 01187, Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "J\u00fclicher", 
        "givenName": "F.", 
        "id": "sg:person.0640775172.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640775172.62"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevlett.85.1778", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000936120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.1778", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000936120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.078101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000950540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.078101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000950540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physrep.2007.02.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001731119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0402001101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002798994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.94.11.5646", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003202644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.106.158101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006279603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.106.158101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006279603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09376", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006291030", 
          "https://doi.org/10.1038/nature09376"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09376", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006291030", 
          "https://doi.org/10.1038/nature09376"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pbio.0030268", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007303875"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pbio.0030268", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007303875"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epje/e2005-00002-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008254387", 
          "https://doi.org/10.1140/epje/e2005-00002-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsif.2007.1306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011998637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.258103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012040662"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.258103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012040662"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/epl/i2004-10501-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013462473"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1242/dev.02642", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015214616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.89.058101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018515697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.89.058101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018515697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c2sm06952k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020565542"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/92/64004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026799273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-3495(99)77226-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027128481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/9/11/422", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029404636"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.72.051714", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031090598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.72.051714", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031090598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0092-8674(00)81281-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031101491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1529/biophysj.105.063743", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031349606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.168101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033254138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.168101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033254138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.semcdb.2008.11.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036109506"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bpj.2009.06.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037303329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.118101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038201896"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.118101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038201896"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08597", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041041695", 
          "https://doi.org/10.1038/nature08597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08597", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041041695", 
          "https://doi.org/10.1038/nature08597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0092-8674(00)81705-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042757726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1011086107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045300665"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/epl/i2004-10414-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046601077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1016693108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047078085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cub.2006.09.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048971115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.devcel.2010.08.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050171084"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.78.641", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050915965"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.78.641", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050915965"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1478-3975/5/1/016003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053700886"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1083/jcb.91.3.107s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058438182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/14/2/023001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059135646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.65.011307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060727763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.65.011307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060727763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.67.061709", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060730176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.67.061709", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060730176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.058102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060755813"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.058102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060755813"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.106.038101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060757895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.106.038101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060757895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.72.2298", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060808777"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.72.2298", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060808777"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.91.108104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060827202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.91.108104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060827202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.098103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060828900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.098103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060828900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.214301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060830412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.214301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060830412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1119/1.10903", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062228002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1086560", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062448305"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-09", 
    "datePublishedReg": "2012-09-01", 
    "description": "Active processes in biological systems often exhibit chiral asymmetries. Examples are the chirality of cytoskeletal filaments which interact with motor proteins, the chirality of the beat of cilia and flagella as well as the helical trajectories of many biological microswimmers. Here, we derive constitutive material equations for active fluids which account for the effects of active chiral processes. We identify active contributions to the antisymmetric part of the stress as well as active angular momentum fluxes. We discuss four types of elementary chiral motors and their effects on a surrounding fluid. We show that large-scale chiral flows can result from the collective behavior of such motors even in cases where isolated motors do not create a hydrodynamic far field.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1140/epje/i2012-12089-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1356903", 
        "issn": [
          "1292-8941", 
          "1292-895X"
        ], 
        "name": "The European Physical Journal E", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "35"
      }
    ], 
    "name": "Active chiral fluids", 
    "pagination": "89", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8b132bd770a52f77aa646218298660cbc638c6e6eecaa92d0187b3bde827c94d"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "23001784"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101126530"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1140/epje/i2012-12089-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1029193538"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1140/epje/i2012-12089-6", 
      "https://app.dimensions.ai/details/publication/pub.1029193538"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000505.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1140%2Fepje%2Fi2012-12089-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epje/i2012-12089-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epje/i2012-12089-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epje/i2012-12089-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epje/i2012-12089-6'


 

This table displays all metadata directly associated to this object as RDF triples.

259 TRIPLES      21 PREDICATES      81 URIs      27 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1140/epje/i2012-12089-6 schema:about N0dbcaf643c89490180c9f0d0e6dfba76
2 N3b5af795b77b460e8b3c216f7c7fa95b
3 N868e39be996e45df9010eebd76616104
4 Nc8d1d43453fb4f6e8fda4e30f688457c
5 Nd2877faf4f8446728587d7657245c7d7
6 Nf680d9645d6a46d4905e1559d81cf96f
7 anzsrc-for:03
8 anzsrc-for:0306
9 schema:author Nd0e223f61eff42fa93b440d86f5ea163
10 schema:citation sg:pub.10.1038/nature08597
11 sg:pub.10.1038/nature09376
12 sg:pub.10.1140/epje/e2005-00002-5
13 https://doi.org/10.1016/j.bpj.2009.06.008
14 https://doi.org/10.1016/j.cub.2006.09.030
15 https://doi.org/10.1016/j.devcel.2010.08.014
16 https://doi.org/10.1016/j.physrep.2007.02.018
17 https://doi.org/10.1016/j.semcdb.2008.11.010
18 https://doi.org/10.1016/s0006-3495(99)77226-7
19 https://doi.org/10.1016/s0092-8674(00)81281-7
20 https://doi.org/10.1016/s0092-8674(00)81705-5
21 https://doi.org/10.1039/c2sm06952k
22 https://doi.org/10.1073/pnas.0402001101
23 https://doi.org/10.1073/pnas.1011086107
24 https://doi.org/10.1073/pnas.1016693108
25 https://doi.org/10.1073/pnas.94.11.5646
26 https://doi.org/10.1083/jcb.91.3.107s
27 https://doi.org/10.1088/1367-2630/14/2/023001
28 https://doi.org/10.1088/1367-2630/9/11/422
29 https://doi.org/10.1088/1478-3975/5/1/016003
30 https://doi.org/10.1098/rsif.2007.1306
31 https://doi.org/10.1103/physreve.65.011307
32 https://doi.org/10.1103/physreve.67.061709
33 https://doi.org/10.1103/physreve.72.051714
34 https://doi.org/10.1103/physrevlett.102.168101
35 https://doi.org/10.1103/physrevlett.103.058102
36 https://doi.org/10.1103/physrevlett.106.038101
37 https://doi.org/10.1103/physrevlett.106.158101
38 https://doi.org/10.1103/physrevlett.72.2298
39 https://doi.org/10.1103/physrevlett.85.1778
40 https://doi.org/10.1103/physrevlett.89.058101
41 https://doi.org/10.1103/physrevlett.91.108104
42 https://doi.org/10.1103/physrevlett.92.078101
43 https://doi.org/10.1103/physrevlett.92.118101
44 https://doi.org/10.1103/physrevlett.93.098103
45 https://doi.org/10.1103/physrevlett.94.214301
46 https://doi.org/10.1103/physrevlett.95.258103
47 https://doi.org/10.1103/revmodphys.78.641
48 https://doi.org/10.1119/1.10903
49 https://doi.org/10.1126/science.1086560
50 https://doi.org/10.1209/0295-5075/92/64004
51 https://doi.org/10.1209/epl/i2004-10414-0
52 https://doi.org/10.1209/epl/i2004-10501-2
53 https://doi.org/10.1242/dev.02642
54 https://doi.org/10.1371/journal.pbio.0030268
55 https://doi.org/10.1529/biophysj.105.063743
56 schema:datePublished 2012-09
57 schema:datePublishedReg 2012-09-01
58 schema:description Active processes in biological systems often exhibit chiral asymmetries. Examples are the chirality of cytoskeletal filaments which interact with motor proteins, the chirality of the beat of cilia and flagella as well as the helical trajectories of many biological microswimmers. Here, we derive constitutive material equations for active fluids which account for the effects of active chiral processes. We identify active contributions to the antisymmetric part of the stress as well as active angular momentum fluxes. We discuss four types of elementary chiral motors and their effects on a surrounding fluid. We show that large-scale chiral flows can result from the collective behavior of such motors even in cases where isolated motors do not create a hydrodynamic far field.
59 schema:genre research_article
60 schema:inLanguage en
61 schema:isAccessibleForFree true
62 schema:isPartOf N577103bd6c0849588ada1e3b0409c1d9
63 N888ff616e12c4d47a5c1c76a67c21105
64 sg:journal.1356903
65 schema:name Active chiral fluids
66 schema:pagination 89
67 schema:productId Na71594cd804c49daae58fa09fa0cea8a
68 Nc18e43e2c21847c9916fb6b14e7d7eb7
69 Ndefd2c71bcb54b9d8c756779839f175e
70 Ne4111e1be3d04183baf4ba96ad676753
71 Necf805cd1adf40ed97b96c5a2832524c
72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029193538
73 https://doi.org/10.1140/epje/i2012-12089-6
74 schema:sdDatePublished 2019-04-11T01:05
75 schema:sdLicense https://scigraph.springernature.com/explorer/license/
76 schema:sdPublisher N3ddcd3ffb48445fd829b869d3224c845
77 schema:url http://link.springer.com/10.1140%2Fepje%2Fi2012-12089-6
78 sgo:license sg:explorer/license/
79 sgo:sdDataset articles
80 rdf:type schema:ScholarlyArticle
81 N0dbcaf643c89490180c9f0d0e6dfba76 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Molecular Conformation
83 rdf:type schema:DefinedTerm
84 N2563c2acead143debc2db202c47a1686 rdf:first sg:person.0640775172.62
85 rdf:rest rdf:nil
86 N3b5af795b77b460e8b3c216f7c7fa95b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Models, Molecular
88 rdf:type schema:DefinedTerm
89 N3ddcd3ffb48445fd829b869d3224c845 schema:name Springer Nature - SN SciGraph project
90 rdf:type schema:Organization
91 N4feb6d7ce4ee423598b24419a7ca5e0e rdf:first sg:person.01012577511.52
92 rdf:rest Na15435e776e34b54b1d2208ae11b5429
93 N577103bd6c0849588ada1e3b0409c1d9 schema:issueNumber 9
94 rdf:type schema:PublicationIssue
95 N868e39be996e45df9010eebd76616104 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Actin Cytoskeleton
97 rdf:type schema:DefinedTerm
98 N888ff616e12c4d47a5c1c76a67c21105 schema:volumeNumber 35
99 rdf:type schema:PublicationVolume
100 Na15435e776e34b54b1d2208ae11b5429 rdf:first sg:person.0661000612.74
101 rdf:rest N2563c2acead143debc2db202c47a1686
102 Na71594cd804c49daae58fa09fa0cea8a schema:name readcube_id
103 schema:value 8b132bd770a52f77aa646218298660cbc638c6e6eecaa92d0187b3bde827c94d
104 rdf:type schema:PropertyValue
105 Nc18e43e2c21847c9916fb6b14e7d7eb7 schema:name pubmed_id
106 schema:value 23001784
107 rdf:type schema:PropertyValue
108 Nc8d1d43453fb4f6e8fda4e30f688457c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Torque
110 rdf:type schema:DefinedTerm
111 Nd0e223f61eff42fa93b440d86f5ea163 rdf:first sg:person.0744464311.45
112 rdf:rest N4feb6d7ce4ee423598b24419a7ca5e0e
113 Nd2877faf4f8446728587d7657245c7d7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Kinetics
115 rdf:type schema:DefinedTerm
116 Ndefd2c71bcb54b9d8c756779839f175e schema:name dimensions_id
117 schema:value pub.1029193538
118 rdf:type schema:PropertyValue
119 Ne4111e1be3d04183baf4ba96ad676753 schema:name nlm_unique_id
120 schema:value 101126530
121 rdf:type schema:PropertyValue
122 Necf805cd1adf40ed97b96c5a2832524c schema:name doi
123 schema:value 10.1140/epje/i2012-12089-6
124 rdf:type schema:PropertyValue
125 Nf680d9645d6a46d4905e1559d81cf96f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Hydrodynamics
127 rdf:type schema:DefinedTerm
128 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
129 schema:name Chemical Sciences
130 rdf:type schema:DefinedTerm
131 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
132 schema:name Physical Chemistry (incl. Structural)
133 rdf:type schema:DefinedTerm
134 sg:journal.1356903 schema:issn 1292-8941
135 1292-895X
136 schema:name The European Physical Journal E
137 rdf:type schema:Periodical
138 sg:person.01012577511.52 schema:affiliation https://www.grid.ac/institutes/grid.419537.d
139 schema:familyName Strempel
140 schema:givenName M.
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01012577511.52
142 rdf:type schema:Person
143 sg:person.0640775172.62 schema:affiliation https://www.grid.ac/institutes/grid.419560.f
144 schema:familyName Jülicher
145 schema:givenName F.
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640775172.62
147 rdf:type schema:Person
148 sg:person.0661000612.74 schema:affiliation https://www.grid.ac/institutes/grid.419537.d
149 schema:familyName Grill
150 schema:givenName S. W.
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661000612.74
152 rdf:type schema:Person
153 sg:person.0744464311.45 schema:affiliation https://www.grid.ac/institutes/grid.419537.d
154 schema:familyName Fürthauer
155 schema:givenName S.
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744464311.45
157 rdf:type schema:Person
158 sg:pub.10.1038/nature08597 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041041695
159 https://doi.org/10.1038/nature08597
160 rdf:type schema:CreativeWork
161 sg:pub.10.1038/nature09376 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006291030
162 https://doi.org/10.1038/nature09376
163 rdf:type schema:CreativeWork
164 sg:pub.10.1140/epje/e2005-00002-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008254387
165 https://doi.org/10.1140/epje/e2005-00002-5
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.bpj.2009.06.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037303329
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.cub.2006.09.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048971115
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.devcel.2010.08.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050171084
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.physrep.2007.02.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001731119
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.semcdb.2008.11.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036109506
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/s0006-3495(99)77226-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027128481
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/s0092-8674(00)81281-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031101491
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/s0092-8674(00)81705-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042757726
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1039/c2sm06952k schema:sameAs https://app.dimensions.ai/details/publication/pub.1020565542
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1073/pnas.0402001101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002798994
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1073/pnas.1011086107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045300665
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1073/pnas.1016693108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047078085
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1073/pnas.94.11.5646 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003202644
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1083/jcb.91.3.107s schema:sameAs https://app.dimensions.ai/details/publication/pub.1058438182
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1088/1367-2630/14/2/023001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059135646
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1088/1367-2630/9/11/422 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029404636
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1088/1478-3975/5/1/016003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053700886
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1098/rsif.2007.1306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011998637
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1103/physreve.65.011307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060727763
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1103/physreve.67.061709 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060730176
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1103/physreve.72.051714 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031090598
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1103/physrevlett.102.168101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033254138
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1103/physrevlett.103.058102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060755813
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1103/physrevlett.106.038101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060757895
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1103/physrevlett.106.158101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006279603
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1103/physrevlett.72.2298 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060808777
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1103/physrevlett.85.1778 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000936120
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1103/physrevlett.89.058101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018515697
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1103/physrevlett.91.108104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060827202
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1103/physrevlett.92.078101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000950540
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1103/physrevlett.92.118101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038201896
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1103/physrevlett.93.098103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060828900
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1103/physrevlett.94.214301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060830412
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1103/physrevlett.95.258103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012040662
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1103/revmodphys.78.641 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050915965
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1119/1.10903 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062228002
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1126/science.1086560 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062448305
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1209/0295-5075/92/64004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026799273
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1209/epl/i2004-10414-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046601077
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1209/epl/i2004-10501-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013462473
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1242/dev.02642 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015214616
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1371/journal.pbio.0030268 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007303875
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1529/biophysj.105.063743 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031349606
252 rdf:type schema:CreativeWork
253 https://www.grid.ac/institutes/grid.419537.d schema:alternateName Max Planck Institute of Molecular Cell Biology and Genetics
254 schema:name Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, 01187, Dresden, Germany
255 Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307, Dresden, Germany
256 rdf:type schema:Organization
257 https://www.grid.ac/institutes/grid.419560.f schema:alternateName Max Planck Institute for the Physics of Complex Systems
258 schema:name Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, 01187, Dresden, Germany
259 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...