A simple stochastic lattice gas model for H1N1 pandemic. Application to the Italian epidemiological data View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-02-16

AUTHORS

A. Fierro, A. Liccardo

ABSTRACT

.We construct a very simple epidemic model for influenza spreading in an age-class-distributed population, by coupling a lattice gas model for the population dynamics with a SIR stochastic model for susceptible, infected and removed/immune individuals. We use as a test case the age-distributed Italian epidemiological data for the novel influenza A(H1N1). The most valuable features of this model are its country-independent and virus-independent structure (few demographic, social and virological data are used to fix some parameters), its large statistic due to a very short run-time machine, and its easy generalizability to include mitigation strategies. In spite of its simplicity, the model presented reproduces the epidemiological Italian data, with sensible predictions for the reproduction number and theoretically interesting results for the generation time distribution. More... »

PAGES

11

Identifiers

URI

http://scigraph.springernature.com/pub.10.1140/epje/i2011-11011-2

DOI

http://dx.doi.org/10.1140/epje/i2011-11011-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1039515418

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/21337015


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adolescent", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Age Distribution", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Child", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Child, Preschool", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diffusion", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Infant", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Infant, Newborn", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Influenza A Virus, H1N1 Subtype", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Influenza, Human", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Italy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Monte Carlo Method", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pandemics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Stochastic Processes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Time Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Young Adult", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Dipartimento di Scienze Fisiche, Universit\u00e0 degli Studi di Napoli \u201cFederico II\u201d, via Cinthia, 80126, Napoli, Italy", 
          "id": "http://www.grid.ac/institutes/grid.4691.a", 
          "name": [
            "CNR-SPIN, via Cinthia, 80126, Napoli, Italy", 
            "Dipartimento di Scienze Fisiche, Universit\u00e0 degli Studi di Napoli \u201cFederico II\u201d, via Cinthia, 80126, Napoli, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fierro", 
        "givenName": "A.", 
        "id": "sg:person.01044655336.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044655336.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "INFN-Sezione di Napoli, via Cinthia, 80126, Napoli, Italy", 
          "id": "http://www.grid.ac/institutes/grid.470211.1", 
          "name": [
            "Dipartimento di Scienze Fisiche, Universit\u00e0 degli Studi di Napoli \u201cFederico II\u201d, via Cinthia, 80126, Napoli, Italy", 
            "INFN-Sezione di Napoli, via Cinthia, 80126, Napoli, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liccardo", 
        "givenName": "A.", 
        "id": "sg:person.013240134430.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013240134430.43"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature04795", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038171497", 
          "https://doi.org/10.1038/nature04795"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004855651", 
          "https://doi.org/10.1038/nature04017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04230", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009672270", 
          "https://doi.org/10.1038/nature04230"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-02-16", 
    "datePublishedReg": "2011-02-16", 
    "description": "Abstract.We construct a very simple epidemic model for influenza spreading in an age-class-distributed population, by coupling a lattice gas model for the population dynamics with a SIR stochastic model for susceptible, infected and removed/immune individuals. We use as a test case the age-distributed Italian epidemiological data for the novel influenza A(H1N1). The most valuable features of this model are its country-independent and virus-independent structure (few demographic, social and virological data are used to fix some parameters), its large statistic due to a very short run-time machine, and its easy generalizability to include mitigation strategies. In spite of its simplicity, the model presented reproduces the epidemiological Italian data, with sensible predictions for the reproduction number and theoretically interesting results for the generation time distribution.", 
    "genre": "article", 
    "id": "sg:pub.10.1140/epje/i2011-11011-2", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1358273", 
        "issn": [
          "1292-8941", 
          "1292-895X"
        ], 
        "name": "The European Physical Journal E", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "34"
      }
    ], 
    "keywords": [
      "Italian epidemiological data", 
      "epidemiological data", 
      "H1N1 pandemic", 
      "immune individuals", 
      "novel influenza", 
      "influenza", 
      "reproduction number", 
      "simple epidemic model", 
      "pandemic", 
      "Italian data", 
      "epidemic model", 
      "population", 
      "data", 
      "individuals", 
      "cases", 
      "generalizability", 
      "spite", 
      "strategies", 
      "model", 
      "generation time distribution", 
      "number", 
      "features", 
      "results", 
      "statistics", 
      "mitigation strategies", 
      "distribution", 
      "sensible predictions", 
      "valuable features", 
      "prediction", 
      "interesting results", 
      "stochastic lattice gas model", 
      "applications", 
      "population dynamics", 
      "structure", 
      "simplicity", 
      "dynamics", 
      "time distribution", 
      "machine", 
      "stochastic model", 
      "lattice gas model", 
      "gas model", 
      "large statistics", 
      "test cases", 
      "SIR stochastic model", 
      "age-distributed Italian epidemiological data", 
      "virus-independent structure", 
      "short run-time machine", 
      "run-time machine", 
      "easy generalizability", 
      "epidemiological Italian data", 
      "simple stochastic lattice gas model"
    ], 
    "name": "A simple stochastic lattice gas model for H1N1 pandemic. Application to the Italian epidemiological data", 
    "pagination": "11", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1039515418"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1140/epje/i2011-11011-2"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "21337015"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1140/epje/i2011-11011-2", 
      "https://app.dimensions.ai/details/publication/pub.1039515418"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_538.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1140/epje/i2011-11011-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epje/i2011-11011-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epje/i2011-11011-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epje/i2011-11011-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epje/i2011-11011-2'


 

This table displays all metadata directly associated to this object as RDF triples.

225 TRIPLES      22 PREDICATES      102 URIs      91 LITERALS      29 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1140/epje/i2011-11011-2 schema:about N025e6f1d43c84acba716f825470d06bf
2 N05553ac113eb4dfea4c12221f4f304f3
3 N0574fdf066f4487e902bdc9bd7540ff3
4 N0971921ec5534baf9fdafd43cb041282
5 N140a52a7b0134f84b788fba6b6634ed1
6 N2c39d4152e5842fc9964e588295e2b79
7 N340141159d0140479969a72940ebb5de
8 N40755304eb214b32b4d620036e670dca
9 N47804a4d59784ef68085fade9fff39f5
10 N5c19e915bdc246daba1a2cb82557a971
11 N5d5c8a2d2d414773872e998c6ed0f6cc
12 N5f4fdadf30f04a8cba30ac5bf85f5066
13 N6585fa567168437cb17f1bc8581f410c
14 N6a5b58f5deb148df9408446ab6c54df0
15 N7a0cdf2fd0594120837d7a6dd2d375b5
16 N8da2d1f8f72c4cd88a8aa63f21d8b58b
17 N8f657ca759214fa7ab9af85b8f73dd0d
18 Na62c9db053aa498bb16178424d76738a
19 Nc733eab6011c42bfb2c6641c86d717f8
20 Ne0ade292e42a44c1b2d050fc6fea6a7c
21 Need0ddb8a855426097fb059ed5bba4ab
22 Nf28298f3441a4237b2a88ced36d6ed1d
23 anzsrc-for:01
24 anzsrc-for:0104
25 schema:author Ne1fa7ac402a6430689baad8397cab5ad
26 schema:citation sg:pub.10.1038/nature04017
27 sg:pub.10.1038/nature04230
28 sg:pub.10.1038/nature04795
29 schema:datePublished 2011-02-16
30 schema:datePublishedReg 2011-02-16
31 schema:description Abstract.We construct a very simple epidemic model for influenza spreading in an age-class-distributed population, by coupling a lattice gas model for the population dynamics with a SIR stochastic model for susceptible, infected and removed/immune individuals. We use as a test case the age-distributed Italian epidemiological data for the novel influenza A(H1N1). The most valuable features of this model are its country-independent and virus-independent structure (few demographic, social and virological data are used to fix some parameters), its large statistic due to a very short run-time machine, and its easy generalizability to include mitigation strategies. In spite of its simplicity, the model presented reproduces the epidemiological Italian data, with sensible predictions for the reproduction number and theoretically interesting results for the generation time distribution.
32 schema:genre article
33 schema:inLanguage en
34 schema:isAccessibleForFree false
35 schema:isPartOf N0ccf691ad2664883a510dd82348c6fe6
36 N913c6e28dac3485aab15d7af0fa999d0
37 sg:journal.1358273
38 schema:keywords H1N1 pandemic
39 Italian data
40 Italian epidemiological data
41 SIR stochastic model
42 age-distributed Italian epidemiological data
43 applications
44 cases
45 data
46 distribution
47 dynamics
48 easy generalizability
49 epidemic model
50 epidemiological Italian data
51 epidemiological data
52 features
53 gas model
54 generalizability
55 generation time distribution
56 immune individuals
57 individuals
58 influenza
59 interesting results
60 large statistics
61 lattice gas model
62 machine
63 mitigation strategies
64 model
65 novel influenza
66 number
67 pandemic
68 population
69 population dynamics
70 prediction
71 reproduction number
72 results
73 run-time machine
74 sensible predictions
75 short run-time machine
76 simple epidemic model
77 simple stochastic lattice gas model
78 simplicity
79 spite
80 statistics
81 stochastic lattice gas model
82 stochastic model
83 strategies
84 structure
85 test cases
86 time distribution
87 valuable features
88 virus-independent structure
89 schema:name A simple stochastic lattice gas model for H1N1 pandemic. Application to the Italian epidemiological data
90 schema:pagination 11
91 schema:productId N0839446ec798415184984430e61cbc2a
92 N225c036024e24994bf1028e1c7ae3446
93 N8bee416e6f7140008f81e8a35487fe25
94 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039515418
95 https://doi.org/10.1140/epje/i2011-11011-2
96 schema:sdDatePublished 2022-01-01T18:25
97 schema:sdLicense https://scigraph.springernature.com/explorer/license/
98 schema:sdPublisher Nfd6715c1385e42da9a1e217fd1db99e0
99 schema:url https://doi.org/10.1140/epje/i2011-11011-2
100 sgo:license sg:explorer/license/
101 sgo:sdDataset articles
102 rdf:type schema:ScholarlyArticle
103 N025e6f1d43c84acba716f825470d06bf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Time Factors
105 rdf:type schema:DefinedTerm
106 N05553ac113eb4dfea4c12221f4f304f3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Monte Carlo Method
108 rdf:type schema:DefinedTerm
109 N0574fdf066f4487e902bdc9bd7540ff3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Adolescent
111 rdf:type schema:DefinedTerm
112 N0839446ec798415184984430e61cbc2a schema:name dimensions_id
113 schema:value pub.1039515418
114 rdf:type schema:PropertyValue
115 N0971921ec5534baf9fdafd43cb041282 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Italy
117 rdf:type schema:DefinedTerm
118 N0ccf691ad2664883a510dd82348c6fe6 schema:volumeNumber 34
119 rdf:type schema:PublicationVolume
120 N140a52a7b0134f84b788fba6b6634ed1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Humans
122 rdf:type schema:DefinedTerm
123 N225c036024e24994bf1028e1c7ae3446 schema:name doi
124 schema:value 10.1140/epje/i2011-11011-2
125 rdf:type schema:PropertyValue
126 N2c39d4152e5842fc9964e588295e2b79 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Young Adult
128 rdf:type schema:DefinedTerm
129 N340141159d0140479969a72940ebb5de schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Age Distribution
131 rdf:type schema:DefinedTerm
132 N40755304eb214b32b4d620036e670dca schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Infant
134 rdf:type schema:DefinedTerm
135 N47804a4d59784ef68085fade9fff39f5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Aged
137 rdf:type schema:DefinedTerm
138 N5c19e915bdc246daba1a2cb82557a971 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Adult
140 rdf:type schema:DefinedTerm
141 N5d5c8a2d2d414773872e998c6ed0f6cc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Models, Biological
143 rdf:type schema:DefinedTerm
144 N5f4fdadf30f04a8cba30ac5bf85f5066 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Reproducibility of Results
146 rdf:type schema:DefinedTerm
147 N6585fa567168437cb17f1bc8581f410c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Stochastic Processes
149 rdf:type schema:DefinedTerm
150 N6a5b58f5deb148df9408446ab6c54df0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Influenza A Virus, H1N1 Subtype
152 rdf:type schema:DefinedTerm
153 N7a0cdf2fd0594120837d7a6dd2d375b5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Middle Aged
155 rdf:type schema:DefinedTerm
156 N8bee416e6f7140008f81e8a35487fe25 schema:name pubmed_id
157 schema:value 21337015
158 rdf:type schema:PropertyValue
159 N8da2d1f8f72c4cd88a8aa63f21d8b58b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Diffusion
161 rdf:type schema:DefinedTerm
162 N8f657ca759214fa7ab9af85b8f73dd0d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
163 schema:name Gases
164 rdf:type schema:DefinedTerm
165 N913c6e28dac3485aab15d7af0fa999d0 schema:issueNumber 2
166 rdf:type schema:PublicationIssue
167 Na62c9db053aa498bb16178424d76738a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
168 schema:name Child
169 rdf:type schema:DefinedTerm
170 Nb90b36975fa24441b5921b56b2ee6758 rdf:first sg:person.013240134430.43
171 rdf:rest rdf:nil
172 Nc733eab6011c42bfb2c6641c86d717f8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
173 schema:name Pandemics
174 rdf:type schema:DefinedTerm
175 Ne0ade292e42a44c1b2d050fc6fea6a7c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
176 schema:name Influenza, Human
177 rdf:type schema:DefinedTerm
178 Ne1fa7ac402a6430689baad8397cab5ad rdf:first sg:person.01044655336.45
179 rdf:rest Nb90b36975fa24441b5921b56b2ee6758
180 Need0ddb8a855426097fb059ed5bba4ab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
181 schema:name Infant, Newborn
182 rdf:type schema:DefinedTerm
183 Nf28298f3441a4237b2a88ced36d6ed1d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
184 schema:name Child, Preschool
185 rdf:type schema:DefinedTerm
186 Nfd6715c1385e42da9a1e217fd1db99e0 schema:name Springer Nature - SN SciGraph project
187 rdf:type schema:Organization
188 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
189 schema:name Mathematical Sciences
190 rdf:type schema:DefinedTerm
191 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
192 schema:name Statistics
193 rdf:type schema:DefinedTerm
194 sg:journal.1358273 schema:issn 1292-8941
195 1292-895X
196 schema:name The European Physical Journal E
197 schema:publisher Springer Nature
198 rdf:type schema:Periodical
199 sg:person.01044655336.45 schema:affiliation grid-institutes:grid.4691.a
200 schema:familyName Fierro
201 schema:givenName A.
202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044655336.45
203 rdf:type schema:Person
204 sg:person.013240134430.43 schema:affiliation grid-institutes:grid.470211.1
205 schema:familyName Liccardo
206 schema:givenName A.
207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013240134430.43
208 rdf:type schema:Person
209 sg:pub.10.1038/nature04017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004855651
210 https://doi.org/10.1038/nature04017
211 rdf:type schema:CreativeWork
212 sg:pub.10.1038/nature04230 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009672270
213 https://doi.org/10.1038/nature04230
214 rdf:type schema:CreativeWork
215 sg:pub.10.1038/nature04795 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038171497
216 https://doi.org/10.1038/nature04795
217 rdf:type schema:CreativeWork
218 grid-institutes:grid.4691.a schema:alternateName Dipartimento di Scienze Fisiche, Università degli Studi di Napoli “Federico II”, via Cinthia, 80126, Napoli, Italy
219 schema:name CNR-SPIN, via Cinthia, 80126, Napoli, Italy
220 Dipartimento di Scienze Fisiche, Università degli Studi di Napoli “Federico II”, via Cinthia, 80126, Napoli, Italy
221 rdf:type schema:Organization
222 grid-institutes:grid.470211.1 schema:alternateName INFN-Sezione di Napoli, via Cinthia, 80126, Napoli, Italy
223 schema:name Dipartimento di Scienze Fisiche, Università degli Studi di Napoli “Federico II”, via Cinthia, 80126, Napoli, Italy
224 INFN-Sezione di Napoli, via Cinthia, 80126, Napoli, Italy
225 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...