Generic theory of colloidal transport View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2009-05

AUTHORS

F. Jülicher, J. Prost

ABSTRACT

We discuss the motion of colloidal particles relative to a two-component fluid consisting of solvent and solute. Particle motion can result from i) net body forces on the particle due to external fields such as gravity; ii) slip velocities on the particle surface due to surface dissipative phenomena. The perturbations of the hydrodynamic flow field exhibit characteristic differences in cases i) and ii) which reflect different patterns of momentum flux corresponding to the existence of net forces, force dipoles or force quadrupoles. In the absence of external fields, gradients of concentration or pressure do not generate net forces on a colloidal particle. Such gradients can nevertheless induce relative motion between particle and fluid. We present a generic description of surface dissipative phenomena based on the linear response of surface fluxes driven by conjugate surface forces. In this framework we discuss different transport scenarios including self-propulsion via surface slip that is induced by active processes on the particle surface. We clarify the nature of force balances in such situations. More... »

PAGES

27-36

Identifiers

URI

http://scigraph.springernature.com/pub.10.1140/epje/i2008-10446-8

DOI

http://dx.doi.org/10.1140/epje/i2008-10446-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1001209835

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/19352732


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Colloids", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Entropy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Linear Models", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Motion", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Surface Properties", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for the Physics of Complex Systems", 
          "id": "https://www.grid.ac/institutes/grid.419560.f", 
          "name": [
            "Max-Planck Institute for the Physics of Complex Systems, N\u00f6thnitzerstr. 38, 01187, Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "J\u00fclicher", 
        "givenName": "F.", 
        "id": "sg:person.0640775172.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640775172.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Physical Chemistry Curie", 
          "id": "https://www.grid.ac/institutes/grid.465542.4", 
          "name": [
            "ESPCI, 10 rue Vauquelin, 75231, Paris Cedex 05, France", 
            "Institut Curie, Physicochimie Curie, 26 rue d\u2019Ulm, 75231, Paris Cedex 05, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Prost", 
        "givenName": "J.", 
        "id": "sg:person.0740761670.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0740761670.49"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1006/jtbi.1996.0035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005755917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s002211207100048x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028495377"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s002211207100048x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028495377"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s002211207100048x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028495377"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/9/11/422", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029404636"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160050201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029583907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.fl.21.010189.000425", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036165565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.220801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037672139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.220801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037672139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/9/5/126", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039650123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.048102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042565360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.048102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042565360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0305004100049902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044674877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja047697z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055837412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja047697z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055837412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2827870", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057876307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.6.2401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060495209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.6.2401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060495209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.158303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060753298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.158303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060753298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.4102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.4102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.81.1529", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060817946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.81.1529", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060817946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/32/7/004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064230750"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-05", 
    "datePublishedReg": "2009-05-01", 
    "description": "We discuss the motion of colloidal particles relative to a two-component fluid consisting of solvent and solute. Particle motion can result from i) net body forces on the particle due to external fields such as gravity; ii) slip velocities on the particle surface due to surface dissipative phenomena. The perturbations of the hydrodynamic flow field exhibit characteristic differences in cases i) and ii) which reflect different patterns of momentum flux corresponding to the existence of net forces, force dipoles or force quadrupoles. In the absence of external fields, gradients of concentration or pressure do not generate net forces on a colloidal particle. Such gradients can nevertheless induce relative motion between particle and fluid. We present a generic description of surface dissipative phenomena based on the linear response of surface fluxes driven by conjugate surface forces. In this framework we discuss different transport scenarios including self-propulsion via surface slip that is induced by active processes on the particle surface. We clarify the nature of force balances in such situations.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1140/epje/i2008-10446-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1356903", 
        "issn": [
          "1292-8941", 
          "1292-895X"
        ], 
        "name": "The European Physical Journal E", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "29"
      }
    ], 
    "name": "Generic theory of colloidal transport", 
    "pagination": "27-36", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "05c3649c1652c0a587bd1dd1e7fac5a1d78f2c6228f4e4c49d21517d1dbe5e05"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "19352732"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101126530"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1140/epje/i2008-10446-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1001209835"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1140/epje/i2008-10446-8", 
      "https://app.dimensions.ai/details/publication/pub.1001209835"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000502.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1140%2Fepje%2Fi2008-10446-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epje/i2008-10446-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epje/i2008-10446-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epje/i2008-10446-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epje/i2008-10446-8'


 

This table displays all metadata directly associated to this object as RDF triples.

148 TRIPLES      21 PREDICATES      50 URIs      26 LITERALS      14 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1140/epje/i2008-10446-8 schema:about N301986b851a64cf7a4ab9b023e35dffe
2 N3d49bb825836432b8621f095fd0f255e
3 N40c9d45827944bc0a6b612a26f14da9d
4 N5318f30f7d3740978bfa38772f68464f
5 N8d588412d8274fd39c4ad128405f165b
6 anzsrc-for:03
7 anzsrc-for:0306
8 schema:author Nce562cec060949eeb1b2181383d1901b
9 schema:citation https://doi.org/10.1002/cpa.3160050201
10 https://doi.org/10.1006/jtbi.1996.0035
11 https://doi.org/10.1017/s002211207100048x
12 https://doi.org/10.1017/s0305004100049902
13 https://doi.org/10.1021/ja047697z
14 https://doi.org/10.1063/1.2827870
15 https://doi.org/10.1088/1367-2630/9/11/422
16 https://doi.org/10.1088/1367-2630/9/5/126
17 https://doi.org/10.1103/physreva.6.2401
18 https://doi.org/10.1103/physrevlett.100.158303
19 https://doi.org/10.1103/physrevlett.77.4102
20 https://doi.org/10.1103/physrevlett.81.1529
21 https://doi.org/10.1103/physrevlett.94.220801
22 https://doi.org/10.1103/physrevlett.99.048102
23 https://doi.org/10.1146/annurev.fl.21.010189.000425
24 https://doi.org/10.1209/0295-5075/32/7/004
25 schema:datePublished 2009-05
26 schema:datePublishedReg 2009-05-01
27 schema:description We discuss the motion of colloidal particles relative to a two-component fluid consisting of solvent and solute. Particle motion can result from i) net body forces on the particle due to external fields such as gravity; ii) slip velocities on the particle surface due to surface dissipative phenomena. The perturbations of the hydrodynamic flow field exhibit characteristic differences in cases i) and ii) which reflect different patterns of momentum flux corresponding to the existence of net forces, force dipoles or force quadrupoles. In the absence of external fields, gradients of concentration or pressure do not generate net forces on a colloidal particle. Such gradients can nevertheless induce relative motion between particle and fluid. We present a generic description of surface dissipative phenomena based on the linear response of surface fluxes driven by conjugate surface forces. In this framework we discuss different transport scenarios including self-propulsion via surface slip that is induced by active processes on the particle surface. We clarify the nature of force balances in such situations.
28 schema:genre research_article
29 schema:inLanguage en
30 schema:isAccessibleForFree true
31 schema:isPartOf N4ee7d5f4d29849f28a4a2363f5af7113
32 Ne202b5c7a0bd4ce09dc200c6cd0d213b
33 sg:journal.1356903
34 schema:name Generic theory of colloidal transport
35 schema:pagination 27-36
36 schema:productId N0a055f7511224059a96dc141a1de2be2
37 N217cbcd25ef542b98a4ef008b5218a6d
38 N30e83b53c7034ab6b6f57c0ea45aa615
39 N7194b84564b943a18a1d47403b3d59a3
40 Nb2bd248b100248359fb91a9276213d24
41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001209835
42 https://doi.org/10.1140/epje/i2008-10446-8
43 schema:sdDatePublished 2019-04-10T22:29
44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
45 schema:sdPublisher Nb211968822724abfbb25e6d982cdb262
46 schema:url http://link.springer.com/10.1140%2Fepje%2Fi2008-10446-8
47 sgo:license sg:explorer/license/
48 sgo:sdDataset articles
49 rdf:type schema:ScholarlyArticle
50 N00badcfc23cb4f4fb40efdad9a7b0e35 rdf:first sg:person.0740761670.49
51 rdf:rest rdf:nil
52 N0a055f7511224059a96dc141a1de2be2 schema:name pubmed_id
53 schema:value 19352732
54 rdf:type schema:PropertyValue
55 N217cbcd25ef542b98a4ef008b5218a6d schema:name readcube_id
56 schema:value 05c3649c1652c0a587bd1dd1e7fac5a1d78f2c6228f4e4c49d21517d1dbe5e05
57 rdf:type schema:PropertyValue
58 N301986b851a64cf7a4ab9b023e35dffe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
59 schema:name Surface Properties
60 rdf:type schema:DefinedTerm
61 N30e83b53c7034ab6b6f57c0ea45aa615 schema:name dimensions_id
62 schema:value pub.1001209835
63 rdf:type schema:PropertyValue
64 N3d49bb825836432b8621f095fd0f255e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
65 schema:name Linear Models
66 rdf:type schema:DefinedTerm
67 N40c9d45827944bc0a6b612a26f14da9d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
68 schema:name Motion
69 rdf:type schema:DefinedTerm
70 N4ee7d5f4d29849f28a4a2363f5af7113 schema:issueNumber 1
71 rdf:type schema:PublicationIssue
72 N5318f30f7d3740978bfa38772f68464f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
73 schema:name Entropy
74 rdf:type schema:DefinedTerm
75 N7194b84564b943a18a1d47403b3d59a3 schema:name doi
76 schema:value 10.1140/epje/i2008-10446-8
77 rdf:type schema:PropertyValue
78 N8d588412d8274fd39c4ad128405f165b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
79 schema:name Colloids
80 rdf:type schema:DefinedTerm
81 Nb211968822724abfbb25e6d982cdb262 schema:name Springer Nature - SN SciGraph project
82 rdf:type schema:Organization
83 Nb2bd248b100248359fb91a9276213d24 schema:name nlm_unique_id
84 schema:value 101126530
85 rdf:type schema:PropertyValue
86 Nce562cec060949eeb1b2181383d1901b rdf:first sg:person.0640775172.62
87 rdf:rest N00badcfc23cb4f4fb40efdad9a7b0e35
88 Ne202b5c7a0bd4ce09dc200c6cd0d213b schema:volumeNumber 29
89 rdf:type schema:PublicationVolume
90 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
91 schema:name Chemical Sciences
92 rdf:type schema:DefinedTerm
93 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
94 schema:name Physical Chemistry (incl. Structural)
95 rdf:type schema:DefinedTerm
96 sg:journal.1356903 schema:issn 1292-8941
97 1292-895X
98 schema:name The European Physical Journal E
99 rdf:type schema:Periodical
100 sg:person.0640775172.62 schema:affiliation https://www.grid.ac/institutes/grid.419560.f
101 schema:familyName Jülicher
102 schema:givenName F.
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640775172.62
104 rdf:type schema:Person
105 sg:person.0740761670.49 schema:affiliation https://www.grid.ac/institutes/grid.465542.4
106 schema:familyName Prost
107 schema:givenName J.
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0740761670.49
109 rdf:type schema:Person
110 https://doi.org/10.1002/cpa.3160050201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029583907
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1006/jtbi.1996.0035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005755917
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1017/s002211207100048x schema:sameAs https://app.dimensions.ai/details/publication/pub.1028495377
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1017/s0305004100049902 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044674877
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1021/ja047697z schema:sameAs https://app.dimensions.ai/details/publication/pub.1055837412
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1063/1.2827870 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057876307
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1088/1367-2630/9/11/422 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029404636
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1088/1367-2630/9/5/126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039650123
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1103/physreva.6.2401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060495209
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1103/physrevlett.100.158303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060753298
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1103/physrevlett.77.4102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060814242
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1103/physrevlett.81.1529 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060817946
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1103/physrevlett.94.220801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037672139
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1103/physrevlett.99.048102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042565360
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1146/annurev.fl.21.010189.000425 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036165565
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1209/0295-5075/32/7/004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064230750
141 rdf:type schema:CreativeWork
142 https://www.grid.ac/institutes/grid.419560.f schema:alternateName Max Planck Institute for the Physics of Complex Systems
143 schema:name Max-Planck Institute for the Physics of Complex Systems, Nöthnitzerstr. 38, 01187, Dresden, Germany
144 rdf:type schema:Organization
145 https://www.grid.ac/institutes/grid.465542.4 schema:alternateName Physical Chemistry Curie
146 schema:name ESPCI, 10 rue Vauquelin, 75231, Paris Cedex 05, France
147 Institut Curie, Physicochimie Curie, 26 rue d’Ulm, 75231, Paris Cedex 05, France
148 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...