Static Rouse modes and related quantities: Corrections to chain ideality in polymer melts View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2008-05

AUTHORS

H. Meyer, J. P. Wittmer, T. Kreer, P. Beckrich, A. Johner, J. Farago, J. Baschnagel

ABSTRACT

Following the Flory ideality hypothesis intrachain and interchain excluded-volume interactions are supposed to compensate each other in dense polymer systems. Multichain effects should thus be neglected and polymer conformations may be understood from simple phantom chain models. Here we provide evidence against this phantom chain, mean-field picture. We analyze numerically and theoretically the static correlation function of the Rouse modes. Our numerical results are obtained from computer simulations of two coarse-grained polymer models for which the strength of the monomer repulsion can be varied, from full excluded volume ("hard monomers") to no excluded volume ("phantom chains"). For nonvanishing excluded volume we find the simulated correlation function of the Rouse modes to deviate markedly from the predictions of phantom chain models. This demonstrates that there are nonnegligible correlations along the chains in a melt. These correlations can be taken into account by perturbation theory. Our simulation results are in good agreement with these new theoretical predictions. More... »

PAGES

25-33

References to SciGraph publications

  • 2003-11. Theoretical notes on dense polymers in two dimensions in THE EUROPEAN PHYSICAL JOURNAL E
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1140/epje/i2007-10250-0

    DOI

    http://dx.doi.org/10.1140/epje/i2007-10250-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1039538025

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/18286228


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "French National Centre for Scientific Research", 
              "id": "https://www.grid.ac/institutes/grid.4444.0", 
              "name": [
                "Institut Charles Sadron, CNRS, 23 rue du Loess, 67037, Strasbourg Cedex, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Meyer", 
            "givenName": "H.", 
            "id": "sg:person.01256311356.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01256311356.02"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "French National Centre for Scientific Research", 
              "id": "https://www.grid.ac/institutes/grid.4444.0", 
              "name": [
                "Institut Charles Sadron, CNRS, 23 rue du Loess, 67037, Strasbourg Cedex, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wittmer", 
            "givenName": "J. P.", 
            "id": "sg:person.0753466336.58", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0753466336.58"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "French National Centre for Scientific Research", 
              "id": "https://www.grid.ac/institutes/grid.4444.0", 
              "name": [
                "Institut Charles Sadron, CNRS, 23 rue du Loess, 67037, Strasbourg Cedex, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kreer", 
            "givenName": "T.", 
            "id": "sg:person.0640741225.47", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640741225.47"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "French National Centre for Scientific Research", 
              "id": "https://www.grid.ac/institutes/grid.4444.0", 
              "name": [
                "Institut Charles Sadron, CNRS, 23 rue du Loess, 67037, Strasbourg Cedex, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Beckrich", 
            "givenName": "P.", 
            "id": "sg:person.01052721415.50", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052721415.50"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "French National Centre for Scientific Research", 
              "id": "https://www.grid.ac/institutes/grid.4444.0", 
              "name": [
                "Institut Charles Sadron, CNRS, 23 rue du Loess, 67037, Strasbourg Cedex, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Johner", 
            "givenName": "A.", 
            "id": "sg:person.01322411220.77", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322411220.77"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "French National Centre for Scientific Research", 
              "id": "https://www.grid.ac/institutes/grid.4444.0", 
              "name": [
                "Institut Charles Sadron, CNRS, 23 rue du Loess, 67037, Strasbourg Cedex, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Farago", 
            "givenName": "J.", 
            "id": "sg:person.01173005717.70", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01173005717.70"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "French National Centre for Scientific Research", 
              "id": "https://www.grid.ac/institutes/grid.4444.0", 
              "name": [
                "Institut Charles Sadron, CNRS, 23 rue du Loess, 67037, Strasbourg Cedex, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Baschnagel", 
            "givenName": "J.", 
            "id": "sg:person.0764215657.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764215657.34"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1140/epje/e2004-00019-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000955648", 
              "https://doi.org/10.1140/epje/e2004-00019-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1209/0295-5075/77/56003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004615329"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0953-8984/18/32/003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008725343"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0034-4885/67/7/r03", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015553008"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1628670", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025532188"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1415456", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027503962"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/00018730210153216", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033042893"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0953-8984/17/20/007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037339640"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0953-8984/17/20/007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037339640"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.93.147801", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046885380"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.93.147801", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046885380"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.76.011803", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046930300"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.76.011803", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046930300"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ct0503264", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055423386"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ct0503264", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055423386"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ma001500f", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056180196"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ma001500f", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056180196"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ma001628x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056180907"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ma001628x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056180907"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ma011309l", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056186049"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ma011309l", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056186049"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ma0115794", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056186205"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ma0115794", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056186205"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ma0626113", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056192849"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ma0626113", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056192849"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1051/jp2:1991138", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056974629"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1699180", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057769712"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1727896", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057794439"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.2035086", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057836221"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.2035086", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057836221"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.458541", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058036552"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.459901", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058037912"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.479907", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058073465"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0305-4470/8/10/019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059080910"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.75.041801", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060735812"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.75.041801", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060735812"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1209/epl/i1999-00193-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064235414"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2008-05", 
        "datePublishedReg": "2008-05-01", 
        "description": "Following the Flory ideality hypothesis intrachain and interchain excluded-volume interactions are supposed to compensate each other in dense polymer systems. Multichain effects should thus be neglected and polymer conformations may be understood from simple phantom chain models. Here we provide evidence against this phantom chain, mean-field picture. We analyze numerically and theoretically the static correlation function of the Rouse modes. Our numerical results are obtained from computer simulations of two coarse-grained polymer models for which the strength of the monomer repulsion can be varied, from full excluded volume (\"hard monomers\") to no excluded volume (\"phantom chains\"). For nonvanishing excluded volume we find the simulated correlation function of the Rouse modes to deviate markedly from the predictions of phantom chain models. This demonstrates that there are nonnegligible correlations along the chains in a melt. These correlations can be taken into account by perturbation theory. Our simulation results are in good agreement with these new theoretical predictions.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1140/epje/i2007-10250-0", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1356903", 
            "issn": [
              "1292-8941", 
              "1292-895X"
            ], 
            "name": "The European Physical Journal E", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1-2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "26"
          }
        ], 
        "name": "Static Rouse modes and related quantities: Corrections to chain ideality in polymer melts", 
        "pagination": "25-33", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "bc574e38543ab9207e4842b030e67c99a5ce610413901626d88ccdbf534dc596"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "18286228"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101126530"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1140/epje/i2007-10250-0"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1039538025"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1140/epje/i2007-10250-0", 
          "https://app.dimensions.ai/details/publication/pub.1039538025"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T20:58", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000591.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1140%2Fepje%2Fi2007-10250-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epje/i2007-10250-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epje/i2007-10250-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epje/i2007-10250-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epje/i2007-10250-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    190 TRIPLES      21 PREDICATES      55 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1140/epje/i2007-10250-0 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author Nc831ebb429b6408ca13b648638cf99cf
    4 schema:citation sg:pub.10.1140/epje/e2004-00019-2
    5 https://doi.org/10.1021/ct0503264
    6 https://doi.org/10.1021/ma001500f
    7 https://doi.org/10.1021/ma001628x
    8 https://doi.org/10.1021/ma011309l
    9 https://doi.org/10.1021/ma0115794
    10 https://doi.org/10.1021/ma0626113
    11 https://doi.org/10.1051/jp2:1991138
    12 https://doi.org/10.1063/1.1415456
    13 https://doi.org/10.1063/1.1628670
    14 https://doi.org/10.1063/1.1699180
    15 https://doi.org/10.1063/1.1727896
    16 https://doi.org/10.1063/1.2035086
    17 https://doi.org/10.1063/1.458541
    18 https://doi.org/10.1063/1.459901
    19 https://doi.org/10.1063/1.479907
    20 https://doi.org/10.1080/00018730210153216
    21 https://doi.org/10.1088/0034-4885/67/7/r03
    22 https://doi.org/10.1088/0305-4470/8/10/019
    23 https://doi.org/10.1088/0953-8984/17/20/007
    24 https://doi.org/10.1088/0953-8984/18/32/003
    25 https://doi.org/10.1103/physreve.75.041801
    26 https://doi.org/10.1103/physreve.76.011803
    27 https://doi.org/10.1103/physrevlett.93.147801
    28 https://doi.org/10.1209/0295-5075/77/56003
    29 https://doi.org/10.1209/epl/i1999-00193-6
    30 schema:datePublished 2008-05
    31 schema:datePublishedReg 2008-05-01
    32 schema:description Following the Flory ideality hypothesis intrachain and interchain excluded-volume interactions are supposed to compensate each other in dense polymer systems. Multichain effects should thus be neglected and polymer conformations may be understood from simple phantom chain models. Here we provide evidence against this phantom chain, mean-field picture. We analyze numerically and theoretically the static correlation function of the Rouse modes. Our numerical results are obtained from computer simulations of two coarse-grained polymer models for which the strength of the monomer repulsion can be varied, from full excluded volume ("hard monomers") to no excluded volume ("phantom chains"). For nonvanishing excluded volume we find the simulated correlation function of the Rouse modes to deviate markedly from the predictions of phantom chain models. This demonstrates that there are nonnegligible correlations along the chains in a melt. These correlations can be taken into account by perturbation theory. Our simulation results are in good agreement with these new theoretical predictions.
    33 schema:genre research_article
    34 schema:inLanguage en
    35 schema:isAccessibleForFree true
    36 schema:isPartOf Ncf2b26df53b54a658e84b2d165605bd3
    37 Ncf7f78a12b334ff08253e8a43034c0a3
    38 sg:journal.1356903
    39 schema:name Static Rouse modes and related quantities: Corrections to chain ideality in polymer melts
    40 schema:pagination 25-33
    41 schema:productId N5a633d3eb58e4efd9be8e5dabc66aa9a
    42 Nbb95c194f1ca4a3e9958a52ac0d76d10
    43 Nd755e09419844ec0b17936687dc5e998
    44 Nde3bc213163248d4aaca6bef4ad271fd
    45 Ne37cf20b1a01438895c14a11ddf1c4cc
    46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039538025
    47 https://doi.org/10.1140/epje/i2007-10250-0
    48 schema:sdDatePublished 2019-04-10T20:58
    49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    50 schema:sdPublisher N404ebc89c20f4537901eb388b6d2a214
    51 schema:url http://link.springer.com/10.1140%2Fepje%2Fi2007-10250-0
    52 sgo:license sg:explorer/license/
    53 sgo:sdDataset articles
    54 rdf:type schema:ScholarlyArticle
    55 N404ebc89c20f4537901eb388b6d2a214 schema:name Springer Nature - SN SciGraph project
    56 rdf:type schema:Organization
    57 N500fd196a013494286f11223e785fea5 rdf:first sg:person.01173005717.70
    58 rdf:rest Na322746f869b4b9a997b0e1cebd3cf35
    59 N5a633d3eb58e4efd9be8e5dabc66aa9a schema:name doi
    60 schema:value 10.1140/epje/i2007-10250-0
    61 rdf:type schema:PropertyValue
    62 N97e188e058264aeba42e48adb8e40e80 rdf:first sg:person.01052721415.50
    63 rdf:rest Nf9409852dc8f4b5a88ae43eb31fa7e38
    64 Na322746f869b4b9a997b0e1cebd3cf35 rdf:first sg:person.0764215657.34
    65 rdf:rest rdf:nil
    66 Nbb95c194f1ca4a3e9958a52ac0d76d10 schema:name readcube_id
    67 schema:value bc574e38543ab9207e4842b030e67c99a5ce610413901626d88ccdbf534dc596
    68 rdf:type schema:PropertyValue
    69 Nc7177ef497f64aca9881f8cb9158c5b4 rdf:first sg:person.0753466336.58
    70 rdf:rest Nef739900f0b745d4b85954afa96ea684
    71 Nc831ebb429b6408ca13b648638cf99cf rdf:first sg:person.01256311356.02
    72 rdf:rest Nc7177ef497f64aca9881f8cb9158c5b4
    73 Ncf2b26df53b54a658e84b2d165605bd3 schema:volumeNumber 26
    74 rdf:type schema:PublicationVolume
    75 Ncf7f78a12b334ff08253e8a43034c0a3 schema:issueNumber 1-2
    76 rdf:type schema:PublicationIssue
    77 Nd755e09419844ec0b17936687dc5e998 schema:name dimensions_id
    78 schema:value pub.1039538025
    79 rdf:type schema:PropertyValue
    80 Nde3bc213163248d4aaca6bef4ad271fd schema:name pubmed_id
    81 schema:value 18286228
    82 rdf:type schema:PropertyValue
    83 Ne37cf20b1a01438895c14a11ddf1c4cc schema:name nlm_unique_id
    84 schema:value 101126530
    85 rdf:type schema:PropertyValue
    86 Nef739900f0b745d4b85954afa96ea684 rdf:first sg:person.0640741225.47
    87 rdf:rest N97e188e058264aeba42e48adb8e40e80
    88 Nf9409852dc8f4b5a88ae43eb31fa7e38 rdf:first sg:person.01322411220.77
    89 rdf:rest N500fd196a013494286f11223e785fea5
    90 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    91 schema:name Information and Computing Sciences
    92 rdf:type schema:DefinedTerm
    93 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    94 schema:name Artificial Intelligence and Image Processing
    95 rdf:type schema:DefinedTerm
    96 sg:journal.1356903 schema:issn 1292-8941
    97 1292-895X
    98 schema:name The European Physical Journal E
    99 rdf:type schema:Periodical
    100 sg:person.01052721415.50 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
    101 schema:familyName Beckrich
    102 schema:givenName P.
    103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052721415.50
    104 rdf:type schema:Person
    105 sg:person.01173005717.70 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
    106 schema:familyName Farago
    107 schema:givenName J.
    108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01173005717.70
    109 rdf:type schema:Person
    110 sg:person.01256311356.02 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
    111 schema:familyName Meyer
    112 schema:givenName H.
    113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01256311356.02
    114 rdf:type schema:Person
    115 sg:person.01322411220.77 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
    116 schema:familyName Johner
    117 schema:givenName A.
    118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322411220.77
    119 rdf:type schema:Person
    120 sg:person.0640741225.47 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
    121 schema:familyName Kreer
    122 schema:givenName T.
    123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640741225.47
    124 rdf:type schema:Person
    125 sg:person.0753466336.58 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
    126 schema:familyName Wittmer
    127 schema:givenName J. P.
    128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0753466336.58
    129 rdf:type schema:Person
    130 sg:person.0764215657.34 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
    131 schema:familyName Baschnagel
    132 schema:givenName J.
    133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764215657.34
    134 rdf:type schema:Person
    135 sg:pub.10.1140/epje/e2004-00019-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000955648
    136 https://doi.org/10.1140/epje/e2004-00019-2
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1021/ct0503264 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055423386
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1021/ma001500f schema:sameAs https://app.dimensions.ai/details/publication/pub.1056180196
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1021/ma001628x schema:sameAs https://app.dimensions.ai/details/publication/pub.1056180907
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1021/ma011309l schema:sameAs https://app.dimensions.ai/details/publication/pub.1056186049
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1021/ma0115794 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056186205
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1021/ma0626113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056192849
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1051/jp2:1991138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056974629
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1063/1.1415456 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027503962
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1063/1.1628670 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025532188
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1063/1.1699180 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057769712
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1063/1.1727896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057794439
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1063/1.2035086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057836221
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1063/1.458541 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058036552
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1063/1.459901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058037912
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1063/1.479907 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058073465
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1080/00018730210153216 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033042893
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1088/0034-4885/67/7/r03 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015553008
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1088/0305-4470/8/10/019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059080910
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1088/0953-8984/17/20/007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037339640
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1088/0953-8984/18/32/003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008725343
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1103/physreve.75.041801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060735812
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1103/physreve.76.011803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046930300
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.1103/physrevlett.93.147801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046885380
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.1209/0295-5075/77/56003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004615329
    185 rdf:type schema:CreativeWork
    186 https://doi.org/10.1209/epl/i1999-00193-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064235414
    187 rdf:type schema:CreativeWork
    188 https://www.grid.ac/institutes/grid.4444.0 schema:alternateName French National Centre for Scientific Research
    189 schema:name Institut Charles Sadron, CNRS, 23 rue du Loess, 67037, Strasbourg Cedex, France
    190 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...