Motor proteins transporting cargos View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2005-06

AUTHORS

K. B. Zeldovich, J. -F. Joanny, J. Prost

ABSTRACT

Processive motor proteins such as kinesin and myosin-V are enzymes that use the energy of ATP hydrolysis to travel along polar cytoskeletal filaments. One of the functions of these proteins is the transport of vesicles and protein complexes that are linked to the light chains of the motors. Modeling the light chain by a linear elastic spring, and using the two-state model for one- and two-headed molecular motors, we study the influence of thermal fluctuations of the cargo on the motion of the motor-cargo complex. We solve numerically the Fokker-Planck equations of motor motion, and find that the mean velocity of the motor-cargo complex decreases monotonously as the spring becomes softer. This effect is due to the random force of thermal fluctuations of the cargo disrupting the operation of the motor. Increasing the size (thus, the friction coefficient) of the cargo also decreases the velocity. Surprisingly, we find that for a given size of the cargo, the velocity has a maximum for a certain friction of the motor. We explain this effect by the interplay between the characteristic length of thermal fluctuations of the cargo on a spring, the motor diffusion length, and the filament period. Our results may be relevant for the interpretation of single-molecule experiments with molecular motors (bead assays), where the motor motion is observed by tracking of a bead attached to the motor. More... »

PAGES

155-163

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1140/epje/i2004-10137-6

DOI

http://dx.doi.org/10.1140/epje/i2004-10137-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1001838368

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/15880289


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biological Transport, Active", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biophysical Phenomena", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biophysics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Elasticity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Kinetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Molecular Motor Proteins", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute Curie", 
          "id": "https://www.grid.ac/institutes/grid.418596.7", 
          "name": [
            "Institut Curie, Section de Recherche, UMR 168 CNRS, 26 rue d\u2019Ulm, 75248, Paris Cedex 05, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zeldovich", 
        "givenName": "K. B.", 
        "id": "sg:person.01307510521.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01307510521.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute Curie", 
          "id": "https://www.grid.ac/institutes/grid.418596.7", 
          "name": [
            "Institut Curie, Section de Recherche, UMR 168 CNRS, 26 rue d\u2019Ulm, 75248, Paris Cedex 05, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Joanny", 
        "givenName": "J. -F.", 
        "id": "sg:person.01314040302.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01314040302.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "ESPCI Paris", 
          "id": "https://www.grid.ac/institutes/grid.15736.36", 
          "name": [
            "Institut Curie, Section de Recherche, UMR 168 CNRS, 26 rue d\u2019Ulm, 75248, Paris Cedex 05, France", 
            "ESPCI, 10 rue Vauquelin, 75231, Paris Cedex 05, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Prost", 
        "givenName": "J.", 
        "id": "sg:person.0740761670.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0740761670.49"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0006-3495(03)74926-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002462290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-3495(00)76594-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013701686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.276.5314.917", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014837591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nsb803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014926976", 
          "https://doi.org/10.1038/nsb803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0370-1573(01)00081-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017711076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/365721a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026078609", 
          "https://doi.org/10.1038/365721a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0301-4622(01)00153-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028647238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-3495(97)78104-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031209085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/emboj/18.16.4404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035334429"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0436709100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044993657"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.68.021907", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060730450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.68.021907", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060730450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.72.1766", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060808642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.72.1766", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060808642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.72.2652", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060808870"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.72.2652", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060808870"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.69.1269", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.69.1269", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1096621", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062449539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s0036139998345343", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062875617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s0036139999353942", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062875653"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005-06", 
    "datePublishedReg": "2005-06-01", 
    "description": "Processive motor proteins such as kinesin and myosin-V are enzymes that use the energy of ATP hydrolysis to travel along polar cytoskeletal filaments. One of the functions of these proteins is the transport of vesicles and protein complexes that are linked to the light chains of the motors. Modeling the light chain by a linear elastic spring, and using the two-state model for one- and two-headed molecular motors, we study the influence of thermal fluctuations of the cargo on the motion of the motor-cargo complex. We solve numerically the Fokker-Planck equations of motor motion, and find that the mean velocity of the motor-cargo complex decreases monotonously as the spring becomes softer. This effect is due to the random force of thermal fluctuations of the cargo disrupting the operation of the motor. Increasing the size (thus, the friction coefficient) of the cargo also decreases the velocity. Surprisingly, we find that for a given size of the cargo, the velocity has a maximum for a certain friction of the motor. We explain this effect by the interplay between the characteristic length of thermal fluctuations of the cargo on a spring, the motor diffusion length, and the filament period. Our results may be relevant for the interpretation of single-molecule experiments with molecular motors (bead assays), where the motor motion is observed by tracking of a bead attached to the motor.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1140/epje/i2004-10137-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1356903", 
        "issn": [
          "1292-8941", 
          "1292-895X"
        ], 
        "name": "The European Physical Journal E", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "17"
      }
    ], 
    "name": "Motor proteins transporting cargos", 
    "pagination": "155-163", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "08c1c944b22225cfd6073bf0fc6fc4bce56dccad3849affbd602f9f5f4d6be3e"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "15880289"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101126530"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1140/epje/i2004-10137-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1001838368"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1140/epje/i2004-10137-6", 
      "https://app.dimensions.ai/details/publication/pub.1001838368"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000579.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1140%2Fepje%2Fi2004-10137-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epje/i2004-10137-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epje/i2004-10137-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epje/i2004-10137-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epje/i2004-10137-6'


 

This table displays all metadata directly associated to this object as RDF triples.

168 TRIPLES      21 PREDICATES      53 URIs      28 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1140/epje/i2004-10137-6 schema:about N163f5528ed9e4518b03b5ea58781761b
2 N557de8bf2bd641f58ded54b3ab0b2493
3 Na457e0a77f614e4d81b65d96a53191af
4 Nb6fe308b5c6b4b29868c9cd225054c24
5 Nc5ee98528baf4388881e1b0dc89f0bf2
6 Nd6199e0eabc340249461acc212b5864b
7 Ne0479ea7f3cf423a8acf6cb26be29756
8 anzsrc-for:06
9 anzsrc-for:0601
10 schema:author N0d79d53c73504feb9ef35605a7858011
11 schema:citation sg:pub.10.1038/365721a0
12 sg:pub.10.1038/nsb803
13 https://doi.org/10.1016/s0006-3495(00)76594-5
14 https://doi.org/10.1016/s0006-3495(03)74926-1
15 https://doi.org/10.1016/s0006-3495(97)78104-9
16 https://doi.org/10.1016/s0301-4622(01)00153-3
17 https://doi.org/10.1016/s0370-1573(01)00081-3
18 https://doi.org/10.1073/pnas.0436709100
19 https://doi.org/10.1093/emboj/18.16.4404
20 https://doi.org/10.1103/physreve.68.021907
21 https://doi.org/10.1103/physrevlett.72.1766
22 https://doi.org/10.1103/physrevlett.72.2652
23 https://doi.org/10.1103/revmodphys.69.1269
24 https://doi.org/10.1126/science.1096621
25 https://doi.org/10.1126/science.276.5314.917
26 https://doi.org/10.1137/s0036139998345343
27 https://doi.org/10.1137/s0036139999353942
28 schema:datePublished 2005-06
29 schema:datePublishedReg 2005-06-01
30 schema:description Processive motor proteins such as kinesin and myosin-V are enzymes that use the energy of ATP hydrolysis to travel along polar cytoskeletal filaments. One of the functions of these proteins is the transport of vesicles and protein complexes that are linked to the light chains of the motors. Modeling the light chain by a linear elastic spring, and using the two-state model for one- and two-headed molecular motors, we study the influence of thermal fluctuations of the cargo on the motion of the motor-cargo complex. We solve numerically the Fokker-Planck equations of motor motion, and find that the mean velocity of the motor-cargo complex decreases monotonously as the spring becomes softer. This effect is due to the random force of thermal fluctuations of the cargo disrupting the operation of the motor. Increasing the size (thus, the friction coefficient) of the cargo also decreases the velocity. Surprisingly, we find that for a given size of the cargo, the velocity has a maximum for a certain friction of the motor. We explain this effect by the interplay between the characteristic length of thermal fluctuations of the cargo on a spring, the motor diffusion length, and the filament period. Our results may be relevant for the interpretation of single-molecule experiments with molecular motors (bead assays), where the motor motion is observed by tracking of a bead attached to the motor.
31 schema:genre research_article
32 schema:inLanguage en
33 schema:isAccessibleForFree false
34 schema:isPartOf N54376ca4054b4f0780c965d47b448b3a
35 N738dd0f7162a45ffa04a58d93f5ba684
36 sg:journal.1356903
37 schema:name Motor proteins transporting cargos
38 schema:pagination 155-163
39 schema:productId N3b5ffe9973f041488233c961d4b46f16
40 N5e9bb5fcfa394d26b838bfa0ce9a4c40
41 N7d8c79277dd94aa8ba165c0952e24053
42 N9e0acebec7de48ee9ef73a72b7b33b77
43 Nc9852cdad6ea46f698df0bb4d68b001f
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001838368
45 https://doi.org/10.1140/epje/i2004-10137-6
46 schema:sdDatePublished 2019-04-10T16:52
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher Nc3b6c109ef254e67886e331d0782a29b
49 schema:url http://link.springer.com/10.1140%2Fepje%2Fi2004-10137-6
50 sgo:license sg:explorer/license/
51 sgo:sdDataset articles
52 rdf:type schema:ScholarlyArticle
53 N0d79d53c73504feb9ef35605a7858011 rdf:first sg:person.01307510521.66
54 rdf:rest Nd6c30ca29efc494ba6c6f22f68d477a6
55 N163f5528ed9e4518b03b5ea58781761b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
56 schema:name Biophysics
57 rdf:type schema:DefinedTerm
58 N32f4d224c8b94db5aec03ea98b44979e rdf:first sg:person.0740761670.49
59 rdf:rest rdf:nil
60 N3b5ffe9973f041488233c961d4b46f16 schema:name pubmed_id
61 schema:value 15880289
62 rdf:type schema:PropertyValue
63 N54376ca4054b4f0780c965d47b448b3a schema:issueNumber 2
64 rdf:type schema:PublicationIssue
65 N557de8bf2bd641f58ded54b3ab0b2493 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
66 schema:name Models, Biological
67 rdf:type schema:DefinedTerm
68 N5e9bb5fcfa394d26b838bfa0ce9a4c40 schema:name nlm_unique_id
69 schema:value 101126530
70 rdf:type schema:PropertyValue
71 N738dd0f7162a45ffa04a58d93f5ba684 schema:volumeNumber 17
72 rdf:type schema:PublicationVolume
73 N7d8c79277dd94aa8ba165c0952e24053 schema:name doi
74 schema:value 10.1140/epje/i2004-10137-6
75 rdf:type schema:PropertyValue
76 N9e0acebec7de48ee9ef73a72b7b33b77 schema:name readcube_id
77 schema:value 08c1c944b22225cfd6073bf0fc6fc4bce56dccad3849affbd602f9f5f4d6be3e
78 rdf:type schema:PropertyValue
79 Na457e0a77f614e4d81b65d96a53191af schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Biophysical Phenomena
81 rdf:type schema:DefinedTerm
82 Nb6fe308b5c6b4b29868c9cd225054c24 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Molecular Motor Proteins
84 rdf:type schema:DefinedTerm
85 Nc3b6c109ef254e67886e331d0782a29b schema:name Springer Nature - SN SciGraph project
86 rdf:type schema:Organization
87 Nc5ee98528baf4388881e1b0dc89f0bf2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Biological Transport, Active
89 rdf:type schema:DefinedTerm
90 Nc9852cdad6ea46f698df0bb4d68b001f schema:name dimensions_id
91 schema:value pub.1001838368
92 rdf:type schema:PropertyValue
93 Nd6199e0eabc340249461acc212b5864b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Kinetics
95 rdf:type schema:DefinedTerm
96 Nd6c30ca29efc494ba6c6f22f68d477a6 rdf:first sg:person.01314040302.05
97 rdf:rest N32f4d224c8b94db5aec03ea98b44979e
98 Ne0479ea7f3cf423a8acf6cb26be29756 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Elasticity
100 rdf:type schema:DefinedTerm
101 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
102 schema:name Biological Sciences
103 rdf:type schema:DefinedTerm
104 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
105 schema:name Biochemistry and Cell Biology
106 rdf:type schema:DefinedTerm
107 sg:journal.1356903 schema:issn 1292-8941
108 1292-895X
109 schema:name The European Physical Journal E
110 rdf:type schema:Periodical
111 sg:person.01307510521.66 schema:affiliation https://www.grid.ac/institutes/grid.418596.7
112 schema:familyName Zeldovich
113 schema:givenName K. B.
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01307510521.66
115 rdf:type schema:Person
116 sg:person.01314040302.05 schema:affiliation https://www.grid.ac/institutes/grid.418596.7
117 schema:familyName Joanny
118 schema:givenName J. -F.
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01314040302.05
120 rdf:type schema:Person
121 sg:person.0740761670.49 schema:affiliation https://www.grid.ac/institutes/grid.15736.36
122 schema:familyName Prost
123 schema:givenName J.
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0740761670.49
125 rdf:type schema:Person
126 sg:pub.10.1038/365721a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026078609
127 https://doi.org/10.1038/365721a0
128 rdf:type schema:CreativeWork
129 sg:pub.10.1038/nsb803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014926976
130 https://doi.org/10.1038/nsb803
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/s0006-3495(00)76594-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013701686
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/s0006-3495(03)74926-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002462290
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/s0006-3495(97)78104-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031209085
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/s0301-4622(01)00153-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028647238
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/s0370-1573(01)00081-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017711076
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1073/pnas.0436709100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044993657
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1093/emboj/18.16.4404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035334429
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1103/physreve.68.021907 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060730450
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1103/physrevlett.72.1766 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060808642
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1103/physrevlett.72.2652 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060808870
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1103/revmodphys.69.1269 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839389
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1126/science.1096621 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062449539
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1126/science.276.5314.917 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014837591
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1137/s0036139998345343 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062875617
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1137/s0036139999353942 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062875653
161 rdf:type schema:CreativeWork
162 https://www.grid.ac/institutes/grid.15736.36 schema:alternateName ESPCI Paris
163 schema:name ESPCI, 10 rue Vauquelin, 75231, Paris Cedex 05, France
164 Institut Curie, Section de Recherche, UMR 168 CNRS, 26 rue d’Ulm, 75248, Paris Cedex 05, France
165 rdf:type schema:Organization
166 https://www.grid.ac/institutes/grid.418596.7 schema:alternateName Institute Curie
167 schema:name Institut Curie, Section de Recherche, UMR 168 CNRS, 26 rue d’Ulm, 75248, Paris Cedex 05, France
168 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...