Complex delay dynamics on railway networks from universal laws to realistic modelling View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Bernardo Monechi, Pietro Gravino, Riccardo Di Clemente, Vito D. P. Servedio

ABSTRACT

Railways are a key infrastructure for any modern country. The reliability and resilience of this peculiar transportation system may be challenged by different shocks such as disruptions, strikes and adverse weather conditions. These events compromise the correct functioning of the system and trigger the spreading of delays into the railway network on a daily basis. Despite their importance, a general theoretical understanding of the underlying causes of these disruptions is still lacking. In this work, we analyse the Italian and German railway networks by leveraging on the train schedules and actual delay data retrieved during the year 2015. We use these data to infer simple statistical laws ruling the emergence of localized delays in different areas of the network and we model the spreading of these delays throughout the network by exploiting a framework inspired by epidemic spreading models. Our model offers a fast and easy tool for the preliminary assessment of the effectiveness of traffic handling policies, and of the railway network criticalities. More... »

PAGES

35

Identifiers

URI

http://scigraph.springernature.com/pub.10.1140/epjds/s13688-018-0160-x

DOI

http://dx.doi.org/10.1140/epjds/s13688-018-0160-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107066260


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute for Scientific Interchange", 
          "id": "https://www.grid.ac/institutes/grid.418750.f", 
          "name": [
            "Institute for Scientific Interchange Foundation, Turin, Italy", 
            "SONY Computer Science Lab, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Monechi", 
        "givenName": "Bernardo", 
        "id": "sg:person.0773321320.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0773321320.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Policlinico Umberto I", 
          "id": "https://www.grid.ac/institutes/grid.417007.5", 
          "name": [
            "SONY Computer Science Lab, Paris, France", 
            "\u201cSapienza\u201d University of Rome, Roma, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gravino", 
        "givenName": "Pietro", 
        "id": "sg:person.0734005770.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734005770.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Massachusetts Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "The Bartlett Centre for Advanced Spatial Analysis, University College London, London, United Kingdom", 
            "Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Di Clemente", 
        "givenName": "Riccardo", 
        "id": "sg:person.0711004243.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711004243.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Complexity Science Hub Vienna", 
          "id": "https://www.grid.ac/institutes/grid.484678.1", 
          "name": [
            "Complexity Science Hub Vienna, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Servedio", 
        "givenName": "Vito D. P.", 
        "id": "sg:person.016024102153.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016024102153.09"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.trb.2009.07.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004306717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0191-2615(99)00004-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004764085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.74.036114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012561143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.74.036114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012561143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.89.208701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012572068"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.89.208701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012572068"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01441640010022456", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013383873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2005.03.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013468172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.86.3200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018922144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.86.3200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018922144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11067-008-9074-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019897707", 
          "https://doi.org/10.1007/s11067-008-9074-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tranpol.2007.10.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020782306"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physrep.2010.11.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022949845"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.trb.2006.02.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028239022"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1590/s0103-97332009000400023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031798094"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0141890", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032777054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tra.2012.01.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034791039"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physa.2006.11.084", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035219776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.67.036106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045247663"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.67.036106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045247663"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.trc.2010.01.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045967675"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/wber/15.3.451", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060064452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tase.2008.916925", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061514865"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tits.2006.888605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061657437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s003614450342480", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062877811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s003614450342480", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062877811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/trsc.32.4.346", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064735477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511805271", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098708499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature25181", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100288446", 
          "https://doi.org/10.1038/nature25181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature25181", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100288446", 
          "https://doi.org/10.1038/nature25181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1257/aer.20101199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101876591"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "Railways are a key infrastructure for any modern country. The reliability and resilience of this peculiar transportation system may be challenged by different shocks such as disruptions, strikes and adverse weather conditions. These events compromise the correct functioning of the system and trigger the spreading of delays into the railway network on a daily basis. Despite their importance, a general theoretical understanding of the underlying causes of these disruptions is still lacking. In this work, we analyse the Italian and German railway networks by leveraging on the train schedules and actual delay data retrieved during the year 2015. We use these data to infer simple statistical laws ruling the emergence of localized delays in different areas of the network and we model the spreading of these delays throughout the network by exploiting a framework inspired by epidemic spreading models. Our model offers a fast and easy tool for the preliminary assessment of the effectiveness of traffic handling policies, and of the railway network criticalities.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1140/epjds/s13688-018-0160-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6540697", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1136140", 
        "issn": [
          "2451-8484", 
          "2193-1127"
        ], 
        "name": "EPJ Data Science", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "name": "Complex delay dynamics on railway networks from universal laws to realistic modelling", 
    "pagination": "35", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "04cc15b2b3bc1b852fb2c74762bcab501e948f9ac35e4426ae5bc65caab073ae"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1140/epjds/s13688-018-0160-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107066260"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1140/epjds/s13688-018-0160-x", 
      "https://app.dimensions.ai/details/publication/pub.1107066260"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000605.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1140%2Fepjds%2Fs13688-018-0160-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epjds/s13688-018-0160-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epjds/s13688-018-0160-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epjds/s13688-018-0160-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epjds/s13688-018-0160-x'


 

This table displays all metadata directly associated to this object as RDF triples.

173 TRIPLES      21 PREDICATES      52 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1140/epjds/s13688-018-0160-x schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N88f4c90d55dc449ba45e15b09cb71597
4 schema:citation sg:pub.10.1007/s11067-008-9074-7
5 sg:pub.10.1038/nature25181
6 https://doi.org/10.1016/j.jcp.2005.03.016
7 https://doi.org/10.1016/j.physa.2006.11.084
8 https://doi.org/10.1016/j.physrep.2010.11.002
9 https://doi.org/10.1016/j.tra.2012.01.003
10 https://doi.org/10.1016/j.tranpol.2007.10.005
11 https://doi.org/10.1016/j.trb.2006.02.007
12 https://doi.org/10.1016/j.trb.2009.07.007
13 https://doi.org/10.1016/j.trc.2010.01.002
14 https://doi.org/10.1016/s0191-2615(99)00004-1
15 https://doi.org/10.1017/cbo9780511805271
16 https://doi.org/10.1080/01441640010022456
17 https://doi.org/10.1093/wber/15.3.451
18 https://doi.org/10.1103/physreve.67.036106
19 https://doi.org/10.1103/physreve.74.036114
20 https://doi.org/10.1103/physrevlett.86.3200
21 https://doi.org/10.1103/physrevlett.89.208701
22 https://doi.org/10.1109/tase.2008.916925
23 https://doi.org/10.1109/tits.2006.888605
24 https://doi.org/10.1137/s003614450342480
25 https://doi.org/10.1257/aer.20101199
26 https://doi.org/10.1287/trsc.32.4.346
27 https://doi.org/10.1371/journal.pone.0141890
28 https://doi.org/10.1590/s0103-97332009000400023
29 schema:datePublished 2018-12
30 schema:datePublishedReg 2018-12-01
31 schema:description Railways are a key infrastructure for any modern country. The reliability and resilience of this peculiar transportation system may be challenged by different shocks such as disruptions, strikes and adverse weather conditions. These events compromise the correct functioning of the system and trigger the spreading of delays into the railway network on a daily basis. Despite their importance, a general theoretical understanding of the underlying causes of these disruptions is still lacking. In this work, we analyse the Italian and German railway networks by leveraging on the train schedules and actual delay data retrieved during the year 2015. We use these data to infer simple statistical laws ruling the emergence of localized delays in different areas of the network and we model the spreading of these delays throughout the network by exploiting a framework inspired by epidemic spreading models. Our model offers a fast and easy tool for the preliminary assessment of the effectiveness of traffic handling policies, and of the railway network criticalities.
32 schema:genre research_article
33 schema:inLanguage en
34 schema:isAccessibleForFree true
35 schema:isPartOf N728dc1cf82d04abdad750a1878899060
36 Nb497a1d1388d4378a5c320c5f8a4aeaa
37 sg:journal.1136140
38 schema:name Complex delay dynamics on railway networks from universal laws to realistic modelling
39 schema:pagination 35
40 schema:productId N343da73b509f46fc85b90e0d35c6b2f4
41 N4aac6b23349c4a01b46cf0a421979e7e
42 N4eeca523a13246a48fc80d9b3e0f43b0
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107066260
44 https://doi.org/10.1140/epjds/s13688-018-0160-x
45 schema:sdDatePublished 2019-04-11T00:31
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher Nb3d763a50dd8401d9ac7f09cfc21faf0
48 schema:url http://link.springer.com/10.1140%2Fepjds%2Fs13688-018-0160-x
49 sgo:license sg:explorer/license/
50 sgo:sdDataset articles
51 rdf:type schema:ScholarlyArticle
52 N343da73b509f46fc85b90e0d35c6b2f4 schema:name dimensions_id
53 schema:value pub.1107066260
54 rdf:type schema:PropertyValue
55 N4aac6b23349c4a01b46cf0a421979e7e schema:name readcube_id
56 schema:value 04cc15b2b3bc1b852fb2c74762bcab501e948f9ac35e4426ae5bc65caab073ae
57 rdf:type schema:PropertyValue
58 N4eeca523a13246a48fc80d9b3e0f43b0 schema:name doi
59 schema:value 10.1140/epjds/s13688-018-0160-x
60 rdf:type schema:PropertyValue
61 N6c4abfa3047b4d43af4d788d9d4fab1d rdf:first sg:person.0711004243.03
62 rdf:rest Nfbc6dcb2dca04ebab98d0de648c01838
63 N728dc1cf82d04abdad750a1878899060 schema:volumeNumber 7
64 rdf:type schema:PublicationVolume
65 N88f4c90d55dc449ba45e15b09cb71597 rdf:first sg:person.0773321320.44
66 rdf:rest Nc7987608821e49c1a3e465daec0c75a9
67 Nb3d763a50dd8401d9ac7f09cfc21faf0 schema:name Springer Nature - SN SciGraph project
68 rdf:type schema:Organization
69 Nb497a1d1388d4378a5c320c5f8a4aeaa schema:issueNumber 1
70 rdf:type schema:PublicationIssue
71 Nc7987608821e49c1a3e465daec0c75a9 rdf:first sg:person.0734005770.96
72 rdf:rest N6c4abfa3047b4d43af4d788d9d4fab1d
73 Nfbc6dcb2dca04ebab98d0de648c01838 rdf:first sg:person.016024102153.09
74 rdf:rest rdf:nil
75 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
76 schema:name Mathematical Sciences
77 rdf:type schema:DefinedTerm
78 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
79 schema:name Statistics
80 rdf:type schema:DefinedTerm
81 sg:grant.6540697 http://pending.schema.org/fundedItem sg:pub.10.1140/epjds/s13688-018-0160-x
82 rdf:type schema:MonetaryGrant
83 sg:journal.1136140 schema:issn 2193-1127
84 2451-8484
85 schema:name EPJ Data Science
86 rdf:type schema:Periodical
87 sg:person.016024102153.09 schema:affiliation https://www.grid.ac/institutes/grid.484678.1
88 schema:familyName Servedio
89 schema:givenName Vito D. P.
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016024102153.09
91 rdf:type schema:Person
92 sg:person.0711004243.03 schema:affiliation https://www.grid.ac/institutes/grid.116068.8
93 schema:familyName Di Clemente
94 schema:givenName Riccardo
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711004243.03
96 rdf:type schema:Person
97 sg:person.0734005770.96 schema:affiliation https://www.grid.ac/institutes/grid.417007.5
98 schema:familyName Gravino
99 schema:givenName Pietro
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734005770.96
101 rdf:type schema:Person
102 sg:person.0773321320.44 schema:affiliation https://www.grid.ac/institutes/grid.418750.f
103 schema:familyName Monechi
104 schema:givenName Bernardo
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0773321320.44
106 rdf:type schema:Person
107 sg:pub.10.1007/s11067-008-9074-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019897707
108 https://doi.org/10.1007/s11067-008-9074-7
109 rdf:type schema:CreativeWork
110 sg:pub.10.1038/nature25181 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100288446
111 https://doi.org/10.1038/nature25181
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/j.jcp.2005.03.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013468172
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/j.physa.2006.11.084 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035219776
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/j.physrep.2010.11.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022949845
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.tra.2012.01.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034791039
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.tranpol.2007.10.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020782306
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.trb.2006.02.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028239022
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.trb.2009.07.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004306717
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.trc.2010.01.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045967675
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/s0191-2615(99)00004-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004764085
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1017/cbo9780511805271 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098708499
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1080/01441640010022456 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013383873
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1093/wber/15.3.451 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060064452
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1103/physreve.67.036106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045247663
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1103/physreve.74.036114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012561143
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1103/physrevlett.86.3200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018922144
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1103/physrevlett.89.208701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012572068
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1109/tase.2008.916925 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061514865
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1109/tits.2006.888605 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061657437
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1137/s003614450342480 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062877811
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1257/aer.20101199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101876591
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1287/trsc.32.4.346 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064735477
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1371/journal.pone.0141890 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032777054
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1590/s0103-97332009000400023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031798094
158 rdf:type schema:CreativeWork
159 https://www.grid.ac/institutes/grid.116068.8 schema:alternateName Massachusetts Institute of Technology
160 schema:name Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, USA
161 The Bartlett Centre for Advanced Spatial Analysis, University College London, London, United Kingdom
162 rdf:type schema:Organization
163 https://www.grid.ac/institutes/grid.417007.5 schema:alternateName Policlinico Umberto I
164 schema:name SONY Computer Science Lab, Paris, France
165 “Sapienza” University of Rome, Roma, Italy
166 rdf:type schema:Organization
167 https://www.grid.ac/institutes/grid.418750.f schema:alternateName Institute for Scientific Interchange
168 schema:name Institute for Scientific Interchange Foundation, Turin, Italy
169 SONY Computer Science Lab, Paris, France
170 rdf:type schema:Organization
171 https://www.grid.ac/institutes/grid.484678.1 schema:alternateName Complexity Science Hub Vienna
172 schema:name Complexity Science Hub Vienna, Vienna, Austria
173 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...