A comparison of spatial-based targeted disease mitigation strategies using mobile phone data View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Stefania Rubrichi, Zbigniew Smoreda, Mirco Musolesi

ABSTRACT

Epidemic outbreaks are an important healthcare challenge, especially in developing countries where they represent one of the major causes of mortality. Approaches that can rapidly target subpopulations for surveillance and control are critical for enhancing containment and mitigation processes during epidemics. Using a real-world dataset from Ivory Coast, this work presents an attempt to unveil the socio-geographical heterogeneity of disease transmission dynamics. By employing a spatially explicit meta-population epidemic model derived from mobile phone Call Detail Records (CDRs), we investigate how the differences in mobility patterns may affect the course of a hypothetical infectious disease outbreak. We consider different existing measures of the spatial dimension of human mobility and interactions, and we analyse their relevance in identifying the highest risk sub-population of individuals, as the best candidates for isolation countermeasures. The approaches presented in this paper provide further evidence that mobile phone data can be effectively exploited to facilitate our understanding of individuals’ spatial behaviour and its relationship with the risk of infectious diseases’ contagion. In particular, we show that CDRs-based indicators of individuals’ spatial activities and interactions hold promise for gaining insight of contagion heterogeneity and thus for developing mitigation strategies to support decision-making during country-level epidemics. More... »

PAGES

17

Identifiers

URI

http://scigraph.springernature.com/pub.10.1140/epjds/s13688-018-0145-9

DOI

http://dx.doi.org/10.1140/epjds/s13688-018-0145-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1105009238


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Orange (France)", 
          "id": "https://www.grid.ac/institutes/grid.89485.38", 
          "name": [
            "SENSE, Orange Labs, Chatillon, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rubrichi", 
        "givenName": "Stefania", 
        "id": "sg:person.01027763675.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01027763675.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Orange (France)", 
          "id": "https://www.grid.ac/institutes/grid.89485.38", 
          "name": [
            "SENSE, Orange Labs, Chatillon, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Smoreda", 
        "givenName": "Zbigniew", 
        "id": "sg:person.016432720647.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016432720647.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University College London", 
          "id": "https://www.grid.ac/institutes/grid.83440.3b", 
          "name": [
            "Department of Geography, University College London, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Musolesi", 
        "givenName": "Mirco", 
        "id": "sg:person.016136471212.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016136471212.11"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1140/epjds/s13688-015-0046-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001591876", 
          "https://doi.org/10.1140/epjds/s13688-015-0046-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-00615-4_14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001603181", 
          "https://doi.org/10.1007/978-3-319-00615-4_14"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.85.066123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003326347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.85.066123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003326347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/currents.outbreaks.91afb5e0f279e7f29e7056095255b288", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007238491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsif.2016.0203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007879286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep00062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008122163", 
          "https://doi.org/10.1038/srep00062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep00292", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009075243", 
          "https://doi.org/10.1038/srep00292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s41060-016-0013-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009278988", 
          "https://doi.org/10.1007/s41060-016-0013-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s41060-016-0013-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009278988", 
          "https://doi.org/10.1007/s41060-016-0013-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1223467", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009640363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1203882109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012923141"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspb.2013.0763", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013941282"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11067-011-9153-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014758125", 
          "https://doi.org/10.1007/s11067-011-9153-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2655691", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016454601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1746", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016710118", 
          "https://doi.org/10.1038/nphys1746"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1760", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018062648", 
          "https://doi.org/10.1038/nphys1760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature10856", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022499367", 
          "https://doi.org/10.1038/nature10856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0052971", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022772268"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pmed.0040013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023758253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4324/9780203320068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024298331"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0510525103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024622397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physa.2008.05.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026427976"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pmed.1001040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026505822"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0016939", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027000112"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjds/s13688-016-0086-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029240472", 
          "https://doi.org/10.1140/epjds/s13688-016-0086-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjds/s13688-016-0086-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029240472", 
          "https://doi.org/10.1140/epjds/s13688-016-0086-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-77477-8_11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032276400", 
          "https://doi.org/10.1007/978-3-540-77477-8_11"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-77477-8_11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032276400", 
          "https://doi.org/10.1007/978-3-540-77477-8_11"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/02681102.2011.643209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032959089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0039253", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033614539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06958", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034823586", 
          "https://doi.org/10.1038/nature06958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.85.036105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034853594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.85.036105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034853594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspb.2009.1605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038339329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.socnet.2004.11.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038531493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1177170", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040139833"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1177170", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040139833"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep00093", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040430282", 
          "https://doi.org/10.1038/srep00093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01944365908978307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040864854"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep05276", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042439531", 
          "https://doi.org/10.1038/srep05276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsif.2012.0986", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043495983"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2831347.2831354", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043587034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044003031", 
          "https://doi.org/10.1038/nature04153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044003031", 
          "https://doi.org/10.1038/nature04153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044003031", 
          "https://doi.org/10.1038/nature04153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pntd.0000481", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044198257"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0263775815608851", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044950696"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0263775815608851", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044950696"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1003716", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046278720"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep10650", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052222609", 
          "https://doi.org/10.1038/srep10650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1074674", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062446810"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tbs.2017.12.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099745528"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "Epidemic outbreaks are an important healthcare challenge, especially in developing countries where they represent one of the major causes of mortality. Approaches that can rapidly target subpopulations for surveillance and control are critical for enhancing containment and mitigation processes during epidemics. Using a real-world dataset from Ivory Coast, this work presents an attempt to unveil the socio-geographical heterogeneity of disease transmission dynamics. By employing a spatially explicit meta-population epidemic model derived from mobile phone Call Detail Records (CDRs), we investigate how the differences in mobility patterns may affect the course of a hypothetical infectious disease outbreak. We consider different existing measures of the spatial dimension of human mobility and interactions, and we analyse their relevance in identifying the highest risk sub-population of individuals, as the best candidates for isolation countermeasures. The approaches presented in this paper provide further evidence that mobile phone data can be effectively exploited to facilitate our understanding of individuals\u2019 spatial behaviour and its relationship with the risk of infectious diseases\u2019 contagion. In particular, we show that CDRs-based indicators of individuals\u2019 spatial activities and interactions hold promise for gaining insight of contagion heterogeneity and thus for developing mitigation strategies to support decision-making during country-level epidemics.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1140/epjds/s13688-018-0145-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136140", 
        "issn": [
          "2451-8484", 
          "2193-1127"
        ], 
        "name": "EPJ Data Science", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "name": "A comparison of spatial-based targeted disease mitigation strategies using mobile phone data", 
    "pagination": "17", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "55816fe275a662f5ff81a501d11f76c61dcb41ce6e8161cd4dbfc81e7fb295e7"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1140/epjds/s13688-018-0145-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1105009238"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1140/epjds/s13688-018-0145-9", 
      "https://app.dimensions.ai/details/publication/pub.1105009238"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89814_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1140%2Fepjds%2Fs13688-018-0145-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epjds/s13688-018-0145-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epjds/s13688-018-0145-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epjds/s13688-018-0145-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epjds/s13688-018-0145-9'


 

This table displays all metadata directly associated to this object as RDF triples.

226 TRIPLES      21 PREDICATES      71 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1140/epjds/s13688-018-0145-9 schema:about anzsrc-for:11
2 anzsrc-for:1117
3 schema:author N41cfe8f1af6c47dea4c8db29ccf8f494
4 schema:citation sg:pub.10.1007/978-3-319-00615-4_14
5 sg:pub.10.1007/978-3-540-77477-8_11
6 sg:pub.10.1007/s11067-011-9153-z
7 sg:pub.10.1007/s41060-016-0013-2
8 sg:pub.10.1038/nature04153
9 sg:pub.10.1038/nature06958
10 sg:pub.10.1038/nature10856
11 sg:pub.10.1038/nphys1746
12 sg:pub.10.1038/nphys1760
13 sg:pub.10.1038/srep00062
14 sg:pub.10.1038/srep00093
15 sg:pub.10.1038/srep00292
16 sg:pub.10.1038/srep05276
17 sg:pub.10.1038/srep10650
18 sg:pub.10.1140/epjds/s13688-015-0046-0
19 sg:pub.10.1140/epjds/s13688-016-0086-0
20 https://doi.org/10.1016/j.physa.2008.05.014
21 https://doi.org/10.1016/j.socnet.2004.11.008
22 https://doi.org/10.1016/j.tbs.2017.12.001
23 https://doi.org/10.1073/pnas.0510525103
24 https://doi.org/10.1073/pnas.1203882109
25 https://doi.org/10.1080/01944365908978307
26 https://doi.org/10.1080/02681102.2011.643209
27 https://doi.org/10.1098/rsif.2012.0986
28 https://doi.org/10.1098/rsif.2016.0203
29 https://doi.org/10.1098/rspb.2009.1605
30 https://doi.org/10.1098/rspb.2013.0763
31 https://doi.org/10.1103/physreve.85.036105
32 https://doi.org/10.1103/physreve.85.066123
33 https://doi.org/10.1126/science.1074674
34 https://doi.org/10.1126/science.1177170
35 https://doi.org/10.1126/science.1223467
36 https://doi.org/10.1145/2655691
37 https://doi.org/10.1145/2831347.2831354
38 https://doi.org/10.1177/0263775815608851
39 https://doi.org/10.1371/currents.outbreaks.91afb5e0f279e7f29e7056095255b288
40 https://doi.org/10.1371/journal.pcbi.1003716
41 https://doi.org/10.1371/journal.pmed.0040013
42 https://doi.org/10.1371/journal.pmed.1001040
43 https://doi.org/10.1371/journal.pntd.0000481
44 https://doi.org/10.1371/journal.pone.0016939
45 https://doi.org/10.1371/journal.pone.0039253
46 https://doi.org/10.1371/journal.pone.0052971
47 https://doi.org/10.4324/9780203320068
48 schema:datePublished 2018-12
49 schema:datePublishedReg 2018-12-01
50 schema:description Epidemic outbreaks are an important healthcare challenge, especially in developing countries where they represent one of the major causes of mortality. Approaches that can rapidly target subpopulations for surveillance and control are critical for enhancing containment and mitigation processes during epidemics. Using a real-world dataset from Ivory Coast, this work presents an attempt to unveil the socio-geographical heterogeneity of disease transmission dynamics. By employing a spatially explicit meta-population epidemic model derived from mobile phone Call Detail Records (CDRs), we investigate how the differences in mobility patterns may affect the course of a hypothetical infectious disease outbreak. We consider different existing measures of the spatial dimension of human mobility and interactions, and we analyse their relevance in identifying the highest risk sub-population of individuals, as the best candidates for isolation countermeasures. The approaches presented in this paper provide further evidence that mobile phone data can be effectively exploited to facilitate our understanding of individuals’ spatial behaviour and its relationship with the risk of infectious diseases’ contagion. In particular, we show that CDRs-based indicators of individuals’ spatial activities and interactions hold promise for gaining insight of contagion heterogeneity and thus for developing mitigation strategies to support decision-making during country-level epidemics.
51 schema:genre research_article
52 schema:inLanguage en
53 schema:isAccessibleForFree true
54 schema:isPartOf Nd8fe9f3e5807490f8a7d34aa02828f9f
55 Ndff38e3b0afa4cb7b8038983b158cde8
56 sg:journal.1136140
57 schema:name A comparison of spatial-based targeted disease mitigation strategies using mobile phone data
58 schema:pagination 17
59 schema:productId N02895a4e2a4f42e5a49f429f886f412c
60 N53d189f8a6614401a825a8da4eeb4d6f
61 N57f0a0d571ce4614870edee3d53e94aa
62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105009238
63 https://doi.org/10.1140/epjds/s13688-018-0145-9
64 schema:sdDatePublished 2019-04-11T09:59
65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
66 schema:sdPublisher N511b255c14cf423796bdd46cc7681afa
67 schema:url https://link.springer.com/10.1140%2Fepjds%2Fs13688-018-0145-9
68 sgo:license sg:explorer/license/
69 sgo:sdDataset articles
70 rdf:type schema:ScholarlyArticle
71 N02895a4e2a4f42e5a49f429f886f412c schema:name readcube_id
72 schema:value 55816fe275a662f5ff81a501d11f76c61dcb41ce6e8161cd4dbfc81e7fb295e7
73 rdf:type schema:PropertyValue
74 N2b348fbae55644fc8b0557e8079f3f93 rdf:first sg:person.016432720647.20
75 rdf:rest N69309d08458849999fc574ec37e5fbd9
76 N41cfe8f1af6c47dea4c8db29ccf8f494 rdf:first sg:person.01027763675.21
77 rdf:rest N2b348fbae55644fc8b0557e8079f3f93
78 N511b255c14cf423796bdd46cc7681afa schema:name Springer Nature - SN SciGraph project
79 rdf:type schema:Organization
80 N53d189f8a6614401a825a8da4eeb4d6f schema:name dimensions_id
81 schema:value pub.1105009238
82 rdf:type schema:PropertyValue
83 N57f0a0d571ce4614870edee3d53e94aa schema:name doi
84 schema:value 10.1140/epjds/s13688-018-0145-9
85 rdf:type schema:PropertyValue
86 N69309d08458849999fc574ec37e5fbd9 rdf:first sg:person.016136471212.11
87 rdf:rest rdf:nil
88 Nd8fe9f3e5807490f8a7d34aa02828f9f schema:volumeNumber 7
89 rdf:type schema:PublicationVolume
90 Ndff38e3b0afa4cb7b8038983b158cde8 schema:issueNumber 1
91 rdf:type schema:PublicationIssue
92 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
93 schema:name Medical and Health Sciences
94 rdf:type schema:DefinedTerm
95 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
96 schema:name Public Health and Health Services
97 rdf:type schema:DefinedTerm
98 sg:journal.1136140 schema:issn 2193-1127
99 2451-8484
100 schema:name EPJ Data Science
101 rdf:type schema:Periodical
102 sg:person.01027763675.21 schema:affiliation https://www.grid.ac/institutes/grid.89485.38
103 schema:familyName Rubrichi
104 schema:givenName Stefania
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01027763675.21
106 rdf:type schema:Person
107 sg:person.016136471212.11 schema:affiliation https://www.grid.ac/institutes/grid.83440.3b
108 schema:familyName Musolesi
109 schema:givenName Mirco
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016136471212.11
111 rdf:type schema:Person
112 sg:person.016432720647.20 schema:affiliation https://www.grid.ac/institutes/grid.89485.38
113 schema:familyName Smoreda
114 schema:givenName Zbigniew
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016432720647.20
116 rdf:type schema:Person
117 sg:pub.10.1007/978-3-319-00615-4_14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001603181
118 https://doi.org/10.1007/978-3-319-00615-4_14
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/978-3-540-77477-8_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032276400
121 https://doi.org/10.1007/978-3-540-77477-8_11
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/s11067-011-9153-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1014758125
124 https://doi.org/10.1007/s11067-011-9153-z
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/s41060-016-0013-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009278988
127 https://doi.org/10.1007/s41060-016-0013-2
128 rdf:type schema:CreativeWork
129 sg:pub.10.1038/nature04153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044003031
130 https://doi.org/10.1038/nature04153
131 rdf:type schema:CreativeWork
132 sg:pub.10.1038/nature06958 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034823586
133 https://doi.org/10.1038/nature06958
134 rdf:type schema:CreativeWork
135 sg:pub.10.1038/nature10856 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022499367
136 https://doi.org/10.1038/nature10856
137 rdf:type schema:CreativeWork
138 sg:pub.10.1038/nphys1746 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016710118
139 https://doi.org/10.1038/nphys1746
140 rdf:type schema:CreativeWork
141 sg:pub.10.1038/nphys1760 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018062648
142 https://doi.org/10.1038/nphys1760
143 rdf:type schema:CreativeWork
144 sg:pub.10.1038/srep00062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008122163
145 https://doi.org/10.1038/srep00062
146 rdf:type schema:CreativeWork
147 sg:pub.10.1038/srep00093 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040430282
148 https://doi.org/10.1038/srep00093
149 rdf:type schema:CreativeWork
150 sg:pub.10.1038/srep00292 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009075243
151 https://doi.org/10.1038/srep00292
152 rdf:type schema:CreativeWork
153 sg:pub.10.1038/srep05276 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042439531
154 https://doi.org/10.1038/srep05276
155 rdf:type schema:CreativeWork
156 sg:pub.10.1038/srep10650 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052222609
157 https://doi.org/10.1038/srep10650
158 rdf:type schema:CreativeWork
159 sg:pub.10.1140/epjds/s13688-015-0046-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001591876
160 https://doi.org/10.1140/epjds/s13688-015-0046-0
161 rdf:type schema:CreativeWork
162 sg:pub.10.1140/epjds/s13688-016-0086-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029240472
163 https://doi.org/10.1140/epjds/s13688-016-0086-0
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.physa.2008.05.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026427976
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.socnet.2004.11.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038531493
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.tbs.2017.12.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099745528
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1073/pnas.0510525103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024622397
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1073/pnas.1203882109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012923141
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1080/01944365908978307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040864854
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1080/02681102.2011.643209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032959089
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1098/rsif.2012.0986 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043495983
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1098/rsif.2016.0203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007879286
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1098/rspb.2009.1605 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038339329
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1098/rspb.2013.0763 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013941282
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1103/physreve.85.036105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034853594
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1103/physreve.85.066123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003326347
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1126/science.1074674 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062446810
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1126/science.1177170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040139833
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1126/science.1223467 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009640363
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1145/2655691 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016454601
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1145/2831347.2831354 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043587034
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1177/0263775815608851 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044950696
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1371/currents.outbreaks.91afb5e0f279e7f29e7056095255b288 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007238491
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1371/journal.pcbi.1003716 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046278720
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1371/journal.pmed.0040013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023758253
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1371/journal.pmed.1001040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026505822
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1371/journal.pntd.0000481 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044198257
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1371/journal.pone.0016939 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027000112
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1371/journal.pone.0039253 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033614539
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1371/journal.pone.0052971 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022772268
218 rdf:type schema:CreativeWork
219 https://doi.org/10.4324/9780203320068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024298331
220 rdf:type schema:CreativeWork
221 https://www.grid.ac/institutes/grid.83440.3b schema:alternateName University College London
222 schema:name Department of Geography, University College London, London, UK
223 rdf:type schema:Organization
224 https://www.grid.ac/institutes/grid.89485.38 schema:alternateName Orange (France)
225 schema:name SENSE, Orange Labs, Chatillon, France
226 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...