Classical Trajectory Monte Carlo simulation of coincidence experiments in electron impact ionization of helium View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-04-17

AUTHORS

Károly Tökési, Béla Paripás, Endre Kovács

ABSTRACT

The state-to-state (exchange) interference of the autoionizing resonances of helium is studied in (e,2e) experiments. These studies are disturbed by the coincidence events caused by the direct ionization, so their decrease is desirable. For this reason, to mimic the experimental observation, we performed four-body classical trajectory Monte Carlo calculations. The calculations were done for 93.15 eV primary energy, where the exchange interference of the 2s2(1S) and 2p2(1D) autoionizing states of helium is expected. The yields of non-coincidence and coincidence events detected in various combinations of scattering geometry were calculated and compared with the experimental observations. Graphical abstract More... »

PAGES

84

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1140/epjd/e2019-90629-7

DOI

http://dx.doi.org/10.1140/epjd/e2019-90629-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113410403


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "ELI-ALPS, ELI-HU Non-profit Ltd., Dugonics t\u00e9r 13, 6720, Szeged, Hungary", 
          "id": "http://www.grid.ac/institutes/grid.494601.e", 
          "name": [
            "Institute for Nuclear Research, Hungarian Academy of Sciences (Atomki), Bem t\u00e9r 18/c, 4026, Debrecen, Hungary", 
            "ELI-ALPS, ELI-HU Non-profit Ltd., Dugonics t\u00e9r 13, 6720, Szeged, Hungary"
          ], 
          "type": "Organization"
        }, 
        "familyName": "T\u00f6k\u00e9si", 
        "givenName": "K\u00e1roly", 
        "id": "sg:person.01165603477.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01165603477.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Physics, University of Miskolc, 3515, Miskolc-Egyetemv\u00e1ros, Hungary", 
          "id": "http://www.grid.ac/institutes/grid.10334.35", 
          "name": [
            "Institute of Physics, University of Miskolc, 3515, Miskolc-Egyetemv\u00e1ros, Hungary"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Parip\u00e1s", 
        "givenName": "B\u00e9la", 
        "id": "sg:person.012230752661.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012230752661.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Physics, University of Miskolc, 3515, Miskolc-Egyetemv\u00e1ros, Hungary", 
          "id": "http://www.grid.ac/institutes/grid.10334.35", 
          "name": [
            "Institute of Physics, University of Miskolc, 3515, Miskolc-Egyetemv\u00e1ros, Hungary"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kov\u00e1cs", 
        "givenName": "Endre", 
        "id": "sg:person.010365431176.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010365431176.78"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1140/epjd/e2014-50635-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008797200", 
          "https://doi.org/10.1140/epjd/e2014-50635-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjd/e2014-40800-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009936424", 
          "https://doi.org/10.1140/epjd/e2014-40800-9"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04-17", 
    "datePublishedReg": "2019-04-17", 
    "description": "Abstract\nThe state-to-state (exchange) interference of the autoionizing resonances of helium is studied in (e,2e) experiments. These studies are disturbed by the coincidence events caused by the direct ionization, so their decrease is desirable. For this reason, to mimic the experimental observation, we performed four-body classical trajectory Monte Carlo calculations. The calculations were done for 93.15 eV primary energy, where the exchange interference of the 2s2(1S) and 2p2(1D) autoionizing states of helium is expected. The yields of non-coincidence and coincidence events detected in various combinations of scattering geometry were calculated and compared with the experimental observations.\nGraphical abstract", 
    "genre": "article", 
    "id": "sg:pub.10.1140/epjd/e2019-90629-7", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1398043", 
        "issn": [
          "1155-4312", 
          "1286-4870"
        ], 
        "name": "The European Physical Journal D", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "73"
      }
    ], 
    "keywords": [
      "classical trajectory Monte Carlo calculations", 
      "classical trajectory Monte Carlo simulations", 
      "coincidence events", 
      "eV primary energy", 
      "electron impact ionization", 
      "experimental observations", 
      "Monte Carlo calculations", 
      "autoionizing states", 
      "autoionizing resonances", 
      "coincidence experiments", 
      "exchange interference", 
      "direct ionization", 
      "impact ionization", 
      "Carlo calculations", 
      "helium", 
      "Monte Carlo simulations", 
      "ionization", 
      "primary energy", 
      "Carlo simulations", 
      "calculations", 
      "state interference", 
      "resonance", 
      "energy", 
      "state", 
      "experiments", 
      "interference", 
      "geometry", 
      "simulations", 
      "yield", 
      "events", 
      "combination", 
      "decrease", 
      "study", 
      "reasons", 
      "observations", 
      "four-body classical trajectory Monte Carlo calculations", 
      "trajectory Monte Carlo calculations", 
      "Graphical abstract Classical Trajectory Monte Carlo simulation", 
      "abstract Classical Trajectory Monte Carlo simulation", 
      "Trajectory Monte Carlo simulation"
    ], 
    "name": "Classical Trajectory Monte Carlo simulation of coincidence experiments in electron impact ionization of helium", 
    "pagination": "84", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113410403"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1140/epjd/e2019-90629-7"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1140/epjd/e2019-90629-7", 
      "https://app.dimensions.ai/details/publication/pub.1113410403"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:44", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_819.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1140/epjd/e2019-90629-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epjd/e2019-90629-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epjd/e2019-90629-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epjd/e2019-90629-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epjd/e2019-90629-7'


 

This table displays all metadata directly associated to this object as RDF triples.

124 TRIPLES      22 PREDICATES      67 URIs      57 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1140/epjd/e2019-90629-7 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author N9139365c150b4429aeaaa6e3af2b26cc
4 schema:citation sg:pub.10.1140/epjd/e2014-40800-9
5 sg:pub.10.1140/epjd/e2014-50635-y
6 schema:datePublished 2019-04-17
7 schema:datePublishedReg 2019-04-17
8 schema:description Abstract The state-to-state (exchange) interference of the autoionizing resonances of helium is studied in (e,2e) experiments. These studies are disturbed by the coincidence events caused by the direct ionization, so their decrease is desirable. For this reason, to mimic the experimental observation, we performed four-body classical trajectory Monte Carlo calculations. The calculations were done for 93.15 eV primary energy, where the exchange interference of the 2s2(1S) and 2p2(1D) autoionizing states of helium is expected. The yields of non-coincidence and coincidence events detected in various combinations of scattering geometry were calculated and compared with the experimental observations. Graphical abstract
9 schema:genre article
10 schema:inLanguage en
11 schema:isAccessibleForFree true
12 schema:isPartOf N2a94d29580df4504a8064a6df4a9beec
13 Nbe101c4bc0624ad180b323fae8540c71
14 sg:journal.1398043
15 schema:keywords Carlo calculations
16 Carlo simulations
17 Graphical abstract Classical Trajectory Monte Carlo simulation
18 Monte Carlo calculations
19 Monte Carlo simulations
20 Trajectory Monte Carlo simulation
21 abstract Classical Trajectory Monte Carlo simulation
22 autoionizing resonances
23 autoionizing states
24 calculations
25 classical trajectory Monte Carlo calculations
26 classical trajectory Monte Carlo simulations
27 coincidence events
28 coincidence experiments
29 combination
30 decrease
31 direct ionization
32 eV primary energy
33 electron impact ionization
34 energy
35 events
36 exchange interference
37 experimental observations
38 experiments
39 four-body classical trajectory Monte Carlo calculations
40 geometry
41 helium
42 impact ionization
43 interference
44 ionization
45 observations
46 primary energy
47 reasons
48 resonance
49 simulations
50 state
51 state interference
52 study
53 trajectory Monte Carlo calculations
54 yield
55 schema:name Classical Trajectory Monte Carlo simulation of coincidence experiments in electron impact ionization of helium
56 schema:pagination 84
57 schema:productId N4982ad92490743c1a2c75772577a50e9
58 N7a2a32d345b048b4886cd0552629f732
59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113410403
60 https://doi.org/10.1140/epjd/e2019-90629-7
61 schema:sdDatePublished 2021-12-01T19:44
62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
63 schema:sdPublisher N4700e98a37f947379486e17871594cf3
64 schema:url https://doi.org/10.1140/epjd/e2019-90629-7
65 sgo:license sg:explorer/license/
66 sgo:sdDataset articles
67 rdf:type schema:ScholarlyArticle
68 N2a94d29580df4504a8064a6df4a9beec schema:issueNumber 4
69 rdf:type schema:PublicationIssue
70 N4700e98a37f947379486e17871594cf3 schema:name Springer Nature - SN SciGraph project
71 rdf:type schema:Organization
72 N4982ad92490743c1a2c75772577a50e9 schema:name doi
73 schema:value 10.1140/epjd/e2019-90629-7
74 rdf:type schema:PropertyValue
75 N7a2a32d345b048b4886cd0552629f732 schema:name dimensions_id
76 schema:value pub.1113410403
77 rdf:type schema:PropertyValue
78 N8653498a27e94ef0b9dfdfbfd53074aa rdf:first sg:person.012230752661.77
79 rdf:rest Nb39d3f92c528479685db0635f61baf79
80 N9139365c150b4429aeaaa6e3af2b26cc rdf:first sg:person.01165603477.14
81 rdf:rest N8653498a27e94ef0b9dfdfbfd53074aa
82 Nb39d3f92c528479685db0635f61baf79 rdf:first sg:person.010365431176.78
83 rdf:rest rdf:nil
84 Nbe101c4bc0624ad180b323fae8540c71 schema:volumeNumber 73
85 rdf:type schema:PublicationVolume
86 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
87 schema:name Physical Sciences
88 rdf:type schema:DefinedTerm
89 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
90 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
91 rdf:type schema:DefinedTerm
92 sg:journal.1398043 schema:issn 1155-4312
93 1286-4870
94 schema:name The European Physical Journal D
95 schema:publisher Springer Nature
96 rdf:type schema:Periodical
97 sg:person.010365431176.78 schema:affiliation grid-institutes:grid.10334.35
98 schema:familyName Kovács
99 schema:givenName Endre
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010365431176.78
101 rdf:type schema:Person
102 sg:person.01165603477.14 schema:affiliation grid-institutes:grid.494601.e
103 schema:familyName Tökési
104 schema:givenName Károly
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01165603477.14
106 rdf:type schema:Person
107 sg:person.012230752661.77 schema:affiliation grid-institutes:grid.10334.35
108 schema:familyName Paripás
109 schema:givenName Béla
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012230752661.77
111 rdf:type schema:Person
112 sg:pub.10.1140/epjd/e2014-40800-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009936424
113 https://doi.org/10.1140/epjd/e2014-40800-9
114 rdf:type schema:CreativeWork
115 sg:pub.10.1140/epjd/e2014-50635-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1008797200
116 https://doi.org/10.1140/epjd/e2014-50635-y
117 rdf:type schema:CreativeWork
118 grid-institutes:grid.10334.35 schema:alternateName Institute of Physics, University of Miskolc, 3515, Miskolc-Egyetemváros, Hungary
119 schema:name Institute of Physics, University of Miskolc, 3515, Miskolc-Egyetemváros, Hungary
120 rdf:type schema:Organization
121 grid-institutes:grid.494601.e schema:alternateName ELI-ALPS, ELI-HU Non-profit Ltd., Dugonics tér 13, 6720, Szeged, Hungary
122 schema:name ELI-ALPS, ELI-HU Non-profit Ltd., Dugonics tér 13, 6720, Szeged, Hungary
123 Institute for Nuclear Research, Hungarian Academy of Sciences (Atomki), Bem tér 18/c, 4026, Debrecen, Hungary
124 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...