Inner-valence Auger decay in hydrocarbon molecules View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-04-02

AUTHORS

Guoke Zhao, Tsveta Miteva, Nicolas Sisourat

ABSTRACT

We have theoretically studied the Auger effect after inner-valence ionization of several unsaturated and saturated cyclic and linear hydrocarbon molecules. These prototype molecules were chosen such that the effects of the different characteristics of aromaticity (π electrons, conjugation, cyclic geometry) on the Auger decay can be investigated separately. We show that among these molecules, the ones having π electrons can undergo Auger decay after inner-valence ionization. Furthermore, the results reported here suggest that conjugation allows for several open Auger decay channels while aromaticity limits the range of the latter. Graphical abstract More... »

PAGES

69

References to SciGraph publications

  • 1984-10. Higher-order approximations for the particle-particle propagator in ZEITSCHRIFT FÜR PHYSIK A HADRONS AND NUCLEI
  • 2016-02-25. Photoelectron and threshold photoelectron valence spectra of pyridine in THE EUROPEAN PHYSICAL JOURNAL D
  • 1993-06-01. Double-ionization energies of fluorinated benzene molecules in JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1140/epjd/e2019-90529-x

    DOI

    http://dx.doi.org/10.1140/epjd/e2019-90529-x

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1113113034


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Sorbonne Universit\u00e9, CNRS, Laboratoire de Chimie Physique Mati\u00e8re et Rayonnement, UMR 7614, 75005, Paris, France", 
              "id": "http://www.grid.ac/institutes/grid.483497.5", 
              "name": [
                "State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, P.R. China", 
                "Sorbonne Universit\u00e9, CNRS, Laboratoire de Chimie Physique Mati\u00e8re et Rayonnement, UMR 7614, 75005, Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhao", 
            "givenName": "Guoke", 
            "id": "sg:person.014211440753.27", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014211440753.27"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Sorbonne Universit\u00e9, CNRS, Laboratoire de Chimie Physique Mati\u00e8re et Rayonnement, UMR 7614, 75005, Paris, France", 
              "id": "http://www.grid.ac/institutes/grid.483497.5", 
              "name": [
                "Sorbonne Universit\u00e9, CNRS, Laboratoire de Chimie Physique Mati\u00e8re et Rayonnement, UMR 7614, 75005, Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Miteva", 
            "givenName": "Tsveta", 
            "id": "sg:person.01171210552.38", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01171210552.38"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Sorbonne Universit\u00e9, CNRS, Laboratoire de Chimie Physique Mati\u00e8re et Rayonnement, UMR 7614, 75005, Paris, France", 
              "id": "http://www.grid.ac/institutes/grid.483497.5", 
              "name": [
                "Sorbonne Universit\u00e9, CNRS, Laboratoire de Chimie Physique Mati\u00e8re et Rayonnement, UMR 7614, 75005, Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sisourat", 
            "givenName": "Nicolas", 
            "id": "sg:person.01101067544.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101067544.07"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1016/1044-0305(93)80010-v", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030925941", 
              "https://doi.org/10.1016/1044-0305(93)80010-v"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01438358", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022290244", 
              "https://doi.org/10.1007/bf01438358"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1140/epjd/e2016-60673-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026464027", 
              "https://doi.org/10.1140/epjd/e2016-60673-0"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-04-02", 
        "datePublishedReg": "2019-04-02", 
        "description": "Abstract\nWe have theoretically studied the Auger effect after inner-valence ionization of several unsaturated and saturated cyclic and linear hydrocarbon molecules. These prototype molecules were chosen such that the effects of the different characteristics of aromaticity (\u03c0 electrons, conjugation, cyclic geometry) on the Auger decay can be investigated separately. We show that among these molecules, the ones having \u03c0 electrons can undergo Auger decay after inner-valence ionization. Furthermore, the results reported here suggest that conjugation allows for several open Auger decay channels while aromaticity limits the range of the latter.\nGraphical abstract", 
        "genre": "article", 
        "id": "sg:pub.10.1140/epjd/e2019-90529-x", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1398043", 
            "issn": [
              "1155-4312", 
              "1286-4870"
            ], 
            "name": "The European Physical Journal D", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "73"
          }
        ], 
        "keywords": [
          "inner-valence ionization", 
          "hydrocarbon molecules", 
          "linear hydrocarbon molecules", 
          "prototype molecule", 
          "Auger decay", 
          "molecules", 
          "aromaticity", 
          "ionization", 
          "Auger decay channels", 
          "conjugation", 
          "electrons", 
          "decay channels", 
          "Auger effect", 
          "decay", 
          "range", 
          "effect", 
          "different characteristics", 
          "one", 
          "channels", 
          "characteristics", 
          "results", 
          "open Auger decay channels", 
          "Graphical abstract Inner-valence Auger decay", 
          "abstract Inner-valence Auger decay", 
          "Inner-valence Auger decay"
        ], 
        "name": "Inner-valence Auger decay in hydrocarbon molecules", 
        "pagination": "69", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1113113034"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1140/epjd/e2019-90529-x"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1140/epjd/e2019-90529-x", 
          "https://app.dimensions.ai/details/publication/pub.1113113034"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:47", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_830.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1140/epjd/e2019-90529-x"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epjd/e2019-90529-x'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epjd/e2019-90529-x'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epjd/e2019-90529-x'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epjd/e2019-90529-x'


     

    This table displays all metadata directly associated to this object as RDF triples.

    106 TRIPLES      22 PREDICATES      52 URIs      42 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1140/epjd/e2019-90529-x schema:about anzsrc-for:02
    2 schema:author N5e10e6dde9384e05adb5a147c9f66aba
    3 schema:citation sg:pub.10.1007/bf01438358
    4 sg:pub.10.1016/1044-0305(93)80010-v
    5 sg:pub.10.1140/epjd/e2016-60673-0
    6 schema:datePublished 2019-04-02
    7 schema:datePublishedReg 2019-04-02
    8 schema:description Abstract We have theoretically studied the Auger effect after inner-valence ionization of several unsaturated and saturated cyclic and linear hydrocarbon molecules. These prototype molecules were chosen such that the effects of the different characteristics of aromaticity (π electrons, conjugation, cyclic geometry) on the Auger decay can be investigated separately. We show that among these molecules, the ones having π electrons can undergo Auger decay after inner-valence ionization. Furthermore, the results reported here suggest that conjugation allows for several open Auger decay channels while aromaticity limits the range of the latter. Graphical abstract
    9 schema:genre article
    10 schema:inLanguage en
    11 schema:isAccessibleForFree true
    12 schema:isPartOf N006481e736234b43acb6ea2bc0e0738c
    13 N675a8abb175e47dd93a8da8cb6722cf0
    14 sg:journal.1398043
    15 schema:keywords Auger decay
    16 Auger decay channels
    17 Auger effect
    18 Graphical abstract Inner-valence Auger decay
    19 Inner-valence Auger decay
    20 abstract Inner-valence Auger decay
    21 aromaticity
    22 channels
    23 characteristics
    24 conjugation
    25 decay
    26 decay channels
    27 different characteristics
    28 effect
    29 electrons
    30 hydrocarbon molecules
    31 inner-valence ionization
    32 ionization
    33 linear hydrocarbon molecules
    34 molecules
    35 one
    36 open Auger decay channels
    37 prototype molecule
    38 range
    39 results
    40 schema:name Inner-valence Auger decay in hydrocarbon molecules
    41 schema:pagination 69
    42 schema:productId N1facdbe9963640b9b9a94764b8f88aec
    43 N2c8b9cf3135a4dcda648fadf5314ccfc
    44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113113034
    45 https://doi.org/10.1140/epjd/e2019-90529-x
    46 schema:sdDatePublished 2021-12-01T19:47
    47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    48 schema:sdPublisher N923932979f664c58b1bcc63360a2b9fe
    49 schema:url https://doi.org/10.1140/epjd/e2019-90529-x
    50 sgo:license sg:explorer/license/
    51 sgo:sdDataset articles
    52 rdf:type schema:ScholarlyArticle
    53 N006481e736234b43acb6ea2bc0e0738c schema:issueNumber 4
    54 rdf:type schema:PublicationIssue
    55 N1facdbe9963640b9b9a94764b8f88aec schema:name dimensions_id
    56 schema:value pub.1113113034
    57 rdf:type schema:PropertyValue
    58 N2c8b9cf3135a4dcda648fadf5314ccfc schema:name doi
    59 schema:value 10.1140/epjd/e2019-90529-x
    60 rdf:type schema:PropertyValue
    61 N5e10e6dde9384e05adb5a147c9f66aba rdf:first sg:person.014211440753.27
    62 rdf:rest Ne29eca5bb7f94bea90d0875dfc6f1228
    63 N675a8abb175e47dd93a8da8cb6722cf0 schema:volumeNumber 73
    64 rdf:type schema:PublicationVolume
    65 N923932979f664c58b1bcc63360a2b9fe schema:name Springer Nature - SN SciGraph project
    66 rdf:type schema:Organization
    67 Ne29eca5bb7f94bea90d0875dfc6f1228 rdf:first sg:person.01171210552.38
    68 rdf:rest Ne8679a28cc334849950028e760863909
    69 Ne8679a28cc334849950028e760863909 rdf:first sg:person.01101067544.07
    70 rdf:rest rdf:nil
    71 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    72 schema:name Physical Sciences
    73 rdf:type schema:DefinedTerm
    74 sg:journal.1398043 schema:issn 1155-4312
    75 1286-4870
    76 schema:name The European Physical Journal D
    77 schema:publisher Springer Nature
    78 rdf:type schema:Periodical
    79 sg:person.01101067544.07 schema:affiliation grid-institutes:grid.483497.5
    80 schema:familyName Sisourat
    81 schema:givenName Nicolas
    82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101067544.07
    83 rdf:type schema:Person
    84 sg:person.01171210552.38 schema:affiliation grid-institutes:grid.483497.5
    85 schema:familyName Miteva
    86 schema:givenName Tsveta
    87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01171210552.38
    88 rdf:type schema:Person
    89 sg:person.014211440753.27 schema:affiliation grid-institutes:grid.483497.5
    90 schema:familyName Zhao
    91 schema:givenName Guoke
    92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014211440753.27
    93 rdf:type schema:Person
    94 sg:pub.10.1007/bf01438358 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022290244
    95 https://doi.org/10.1007/bf01438358
    96 rdf:type schema:CreativeWork
    97 sg:pub.10.1016/1044-0305(93)80010-v schema:sameAs https://app.dimensions.ai/details/publication/pub.1030925941
    98 https://doi.org/10.1016/1044-0305(93)80010-v
    99 rdf:type schema:CreativeWork
    100 sg:pub.10.1140/epjd/e2016-60673-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026464027
    101 https://doi.org/10.1140/epjd/e2016-60673-0
    102 rdf:type schema:CreativeWork
    103 grid-institutes:grid.483497.5 schema:alternateName Sorbonne Université, CNRS, Laboratoire de Chimie Physique Matière et Rayonnement, UMR 7614, 75005, Paris, France
    104 schema:name Sorbonne Université, CNRS, Laboratoire de Chimie Physique Matière et Rayonnement, UMR 7614, 75005, Paris, France
    105 State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, P.R. China
    106 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...