On the possibility to detect quantum correlation regions with the variable optimal measurement angle View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-04-02

AUTHORS

Ekaterina V. Moreva, Marco Gramegna, Mikhail A. Yurischev

ABSTRACT

Quantum correlations described by quantum discord and one-way quantum deficit can contain ordinary regions with constant (i.e., universal) optimal measurement angle 0 or π/2 with respect to the z-axis and regions with a variable (state-dependent) angle of the optimal measurement. The latter regions which are absent in the Bell-diagonal states are very tiny for the quantum discord and cannot be observed experimentally due to various imperfections on the preparation and measurement steps of the experiment. On the contrary, for the one-way quantum deficit we succeeded in getting the special two-qubit X states which seem to allow one to reach all regions of quantum correlation exploiting available quantum optical techniques. These states give possibility to deep investigation of quantum correlations and related optimization problems at new region and it’s boundaries. In the paper, explicit theoretical calculations applicable to one-way deficit are reported, together with the design of the experimental setup for generating such selected family of states; moreover, there are presented numerical simulations showing that the most inaccessible region with the intermediate optimal measurement angle may be resolved experimentally. Graphical abstract More... »

PAGES

68

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1140/epjd/e2019-90451-3

DOI

http://dx.doi.org/10.1140/epjd/e2019-90451-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113094651


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Istituto Nazionale di Ricerca Metrologica, Strada delle Cacce 91, 10135, Torino, Italy", 
          "id": "http://www.grid.ac/institutes/grid.425358.d", 
          "name": [
            "Istituto Nazionale di Ricerca Metrologica, Strada delle Cacce 91, 10135, Torino, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Moreva", 
        "givenName": "Ekaterina V.", 
        "id": "sg:person.01316011707.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316011707.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Istituto Nazionale di Ricerca Metrologica, Strada delle Cacce 91, 10135, Torino, Italy", 
          "id": "http://www.grid.ac/institutes/grid.425358.d", 
          "name": [
            "Istituto Nazionale di Ricerca Metrologica, Strada delle Cacce 91, 10135, Torino, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gramegna", 
        "givenName": "Marco", 
        "id": "sg:person.01345545302.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01345545302.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Problems of Chemical Physics of the Russian Academy of Sciences, 142432, Chernogolovka, Moscow Region, Russia", 
          "id": "http://www.grid.ac/institutes/grid.418949.9", 
          "name": [
            "Institute of Problems of Chemical Physics of the Russian Academy of Sciences, 142432, Chernogolovka, Moscow Region, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yurischev", 
        "givenName": "Mikhail A.", 
        "id": "sg:person.012333141215.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012333141215.68"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/s1063776106050037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042198188", 
          "https://doi.org/10.1134/s1063776106050037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s106377610906003x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012217702", 
          "https://doi.org/10.1134/s106377610906003x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-09656-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035572377", 
          "https://doi.org/10.1007/978-3-319-09656-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-53412-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086151434", 
          "https://doi.org/10.1007/978-3-319-53412-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-00619-7_7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045936605", 
          "https://doi.org/10.1007/978-3-642-00619-7_7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11128-015-1180-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009801016", 
          "https://doi.org/10.1007/s11128-015-1180-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s106377611411020x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002546510", 
          "https://doi.org/10.1134/s106377611411020x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10773-015-2862-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029759563", 
          "https://doi.org/10.1007/s10773-015-2862-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11128-017-1701-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091384571", 
          "https://doi.org/10.1007/s11128-017-1701-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/1.1630126", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005696653", 
          "https://doi.org/10.1134/1.1630126"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11128-015-1046-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038442464", 
          "https://doi.org/10.1007/s11128-015-1046-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11128-017-1776-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093098907", 
          "https://doi.org/10.1007/s11128-017-1776-7"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04-02", 
    "datePublishedReg": "2019-04-02", 
    "description": "Abstract\nQuantum correlations described by quantum discord and one-way quantum deficit can contain ordinary regions with constant (i.e., universal) optimal measurement angle 0 or \u03c0/2 with respect to the z-axis and regions with a variable (state-dependent) angle of the optimal measurement. The latter regions which are absent in the Bell-diagonal states are very tiny for the quantum discord and cannot be observed experimentally due to various imperfections on the preparation and measurement steps of the experiment. On the contrary, for the one-way quantum deficit we succeeded in getting the special two-qubit X states which seem to allow one to reach all regions of quantum correlation exploiting available quantum optical techniques. These states give possibility to deep investigation of quantum correlations and related optimization problems at new region and it\u2019s boundaries. In the paper, explicit theoretical calculations applicable to one-way deficit are reported, together with the design of the experimental setup for generating such selected family of states; moreover, there are presented numerical simulations showing that the most inaccessible region with the intermediate optimal measurement angle may be resolved experimentally.\nGraphical abstract", 
    "genre": "article", 
    "id": "sg:pub.10.1140/epjd/e2019-90451-3", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1398043", 
        "issn": [
          "1155-4312", 
          "1286-4870"
        ], 
        "name": "The European Physical Journal D", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "73"
      }
    ], 
    "keywords": [
      "one-way quantum deficit", 
      "quantum correlations", 
      "quantum discord", 
      "quantum deficit", 
      "quantum optical techniques", 
      "two-qubit X states", 
      "explicit theoretical calculations", 
      "one-way deficit", 
      "Bell-diagonal states", 
      "measurement angle", 
      "family of states", 
      "optical techniques", 
      "related optimization problems", 
      "theoretical calculations", 
      "optimal measurement", 
      "optimization problem", 
      "experimental setup", 
      "variable angle", 
      "correlation region", 
      "angle 0", 
      "discord", 
      "measurement step", 
      "numerical simulations", 
      "ordinary regions", 
      "inaccessible regions", 
      "angle", 
      "state", 
      "new regions", 
      "calculations", 
      "setup", 
      "region", 
      "measurements", 
      "possibility", 
      "axis", 
      "imperfections", 
      "simulations", 
      "problem", 
      "latter region", 
      "experiments", 
      "Graphical Abstract", 
      "correlation", 
      "boundaries", 
      "technique", 
      "deeper investigation", 
      "investigation", 
      "respect", 
      "design", 
      "step", 
      "Abstract", 
      "contrary", 
      "preparation", 
      "family", 
      "paper", 
      "deficits", 
      "constant (i.e., universal) optimal measurement angle 0", 
      "optimal measurement angle 0", 
      "measurement angle 0", 
      "X states", 
      "available quantum optical techniques", 
      "intermediate optimal measurement angle", 
      "optimal measurement angle", 
      "quantum correlation regions", 
      "variable optimal measurement angle"
    ], 
    "name": "On the possibility to detect quantum correlation regions with the variable optimal measurement angle", 
    "pagination": "68", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113094651"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1140/epjd/e2019-90451-3"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1140/epjd/e2019-90451-3", 
      "https://app.dimensions.ai/details/publication/pub.1113094651"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:44", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_795.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1140/epjd/e2019-90451-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epjd/e2019-90451-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epjd/e2019-90451-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epjd/e2019-90451-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epjd/e2019-90451-3'


 

This table displays all metadata directly associated to this object as RDF triples.

186 TRIPLES      22 PREDICATES      100 URIs      80 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1140/epjd/e2019-90451-3 schema:about anzsrc-for:02
2 anzsrc-for:0206
3 schema:author N034ca8e2ddfb46ffb1483a7849eb90fe
4 schema:citation sg:pub.10.1007/978-3-319-09656-8
5 sg:pub.10.1007/978-3-319-53412-1
6 sg:pub.10.1007/978-3-642-00619-7_7
7 sg:pub.10.1007/s10773-015-2862-1
8 sg:pub.10.1007/s11128-015-1046-5
9 sg:pub.10.1007/s11128-015-1180-0
10 sg:pub.10.1007/s11128-017-1701-0
11 sg:pub.10.1007/s11128-017-1776-7
12 sg:pub.10.1134/1.1630126
13 sg:pub.10.1134/s1063776106050037
14 sg:pub.10.1134/s106377610906003x
15 sg:pub.10.1134/s106377611411020x
16 schema:datePublished 2019-04-02
17 schema:datePublishedReg 2019-04-02
18 schema:description Abstract Quantum correlations described by quantum discord and one-way quantum deficit can contain ordinary regions with constant (i.e., universal) optimal measurement angle 0 or π/2 with respect to the z-axis and regions with a variable (state-dependent) angle of the optimal measurement. The latter regions which are absent in the Bell-diagonal states are very tiny for the quantum discord and cannot be observed experimentally due to various imperfections on the preparation and measurement steps of the experiment. On the contrary, for the one-way quantum deficit we succeeded in getting the special two-qubit X states which seem to allow one to reach all regions of quantum correlation exploiting available quantum optical techniques. These states give possibility to deep investigation of quantum correlations and related optimization problems at new region and it’s boundaries. In the paper, explicit theoretical calculations applicable to one-way deficit are reported, together with the design of the experimental setup for generating such selected family of states; moreover, there are presented numerical simulations showing that the most inaccessible region with the intermediate optimal measurement angle may be resolved experimentally. Graphical abstract
19 schema:genre article
20 schema:inLanguage en
21 schema:isAccessibleForFree true
22 schema:isPartOf N4aec35dd7b2a4495984cf32d747dc6fd
23 N882d22035bd5447a968a80aaa9830d6e
24 sg:journal.1398043
25 schema:keywords Abstract
26 Bell-diagonal states
27 Graphical Abstract
28 X states
29 angle
30 angle 0
31 available quantum optical techniques
32 axis
33 boundaries
34 calculations
35 constant (i.e., universal) optimal measurement angle 0
36 contrary
37 correlation
38 correlation region
39 deeper investigation
40 deficits
41 design
42 discord
43 experimental setup
44 experiments
45 explicit theoretical calculations
46 family
47 family of states
48 imperfections
49 inaccessible regions
50 intermediate optimal measurement angle
51 investigation
52 latter region
53 measurement angle
54 measurement angle 0
55 measurement step
56 measurements
57 new regions
58 numerical simulations
59 one-way deficit
60 one-way quantum deficit
61 optical techniques
62 optimal measurement
63 optimal measurement angle
64 optimal measurement angle 0
65 optimization problem
66 ordinary regions
67 paper
68 possibility
69 preparation
70 problem
71 quantum correlation regions
72 quantum correlations
73 quantum deficit
74 quantum discord
75 quantum optical techniques
76 region
77 related optimization problems
78 respect
79 setup
80 simulations
81 state
82 step
83 technique
84 theoretical calculations
85 two-qubit X states
86 variable angle
87 variable optimal measurement angle
88 schema:name On the possibility to detect quantum correlation regions with the variable optimal measurement angle
89 schema:pagination 68
90 schema:productId N171e13308e554ff091ed8b508a5cf373
91 N424935d056b34ee98f167e35a078cc81
92 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113094651
93 https://doi.org/10.1140/epjd/e2019-90451-3
94 schema:sdDatePublished 2021-12-01T19:44
95 schema:sdLicense https://scigraph.springernature.com/explorer/license/
96 schema:sdPublisher Na91a8f6791b84bbaa744aa7d7f9a4949
97 schema:url https://doi.org/10.1140/epjd/e2019-90451-3
98 sgo:license sg:explorer/license/
99 sgo:sdDataset articles
100 rdf:type schema:ScholarlyArticle
101 N034ca8e2ddfb46ffb1483a7849eb90fe rdf:first sg:person.01316011707.59
102 rdf:rest N66d0de2b6647453b96dcc309e7bcba4f
103 N171e13308e554ff091ed8b508a5cf373 schema:name doi
104 schema:value 10.1140/epjd/e2019-90451-3
105 rdf:type schema:PropertyValue
106 N424935d056b34ee98f167e35a078cc81 schema:name dimensions_id
107 schema:value pub.1113094651
108 rdf:type schema:PropertyValue
109 N4aec35dd7b2a4495984cf32d747dc6fd schema:issueNumber 4
110 rdf:type schema:PublicationIssue
111 N66d0de2b6647453b96dcc309e7bcba4f rdf:first sg:person.01345545302.89
112 rdf:rest Nee36c691ad12451a8187712847bc5f71
113 N882d22035bd5447a968a80aaa9830d6e schema:volumeNumber 73
114 rdf:type schema:PublicationVolume
115 Na91a8f6791b84bbaa744aa7d7f9a4949 schema:name Springer Nature - SN SciGraph project
116 rdf:type schema:Organization
117 Nee36c691ad12451a8187712847bc5f71 rdf:first sg:person.012333141215.68
118 rdf:rest rdf:nil
119 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
120 schema:name Physical Sciences
121 rdf:type schema:DefinedTerm
122 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
123 schema:name Quantum Physics
124 rdf:type schema:DefinedTerm
125 sg:journal.1398043 schema:issn 1155-4312
126 1286-4870
127 schema:name The European Physical Journal D
128 schema:publisher Springer Nature
129 rdf:type schema:Periodical
130 sg:person.012333141215.68 schema:affiliation grid-institutes:grid.418949.9
131 schema:familyName Yurischev
132 schema:givenName Mikhail A.
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012333141215.68
134 rdf:type schema:Person
135 sg:person.01316011707.59 schema:affiliation grid-institutes:grid.425358.d
136 schema:familyName Moreva
137 schema:givenName Ekaterina V.
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316011707.59
139 rdf:type schema:Person
140 sg:person.01345545302.89 schema:affiliation grid-institutes:grid.425358.d
141 schema:familyName Gramegna
142 schema:givenName Marco
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01345545302.89
144 rdf:type schema:Person
145 sg:pub.10.1007/978-3-319-09656-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035572377
146 https://doi.org/10.1007/978-3-319-09656-8
147 rdf:type schema:CreativeWork
148 sg:pub.10.1007/978-3-319-53412-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086151434
149 https://doi.org/10.1007/978-3-319-53412-1
150 rdf:type schema:CreativeWork
151 sg:pub.10.1007/978-3-642-00619-7_7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045936605
152 https://doi.org/10.1007/978-3-642-00619-7_7
153 rdf:type schema:CreativeWork
154 sg:pub.10.1007/s10773-015-2862-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029759563
155 https://doi.org/10.1007/s10773-015-2862-1
156 rdf:type schema:CreativeWork
157 sg:pub.10.1007/s11128-015-1046-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038442464
158 https://doi.org/10.1007/s11128-015-1046-5
159 rdf:type schema:CreativeWork
160 sg:pub.10.1007/s11128-015-1180-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009801016
161 https://doi.org/10.1007/s11128-015-1180-0
162 rdf:type schema:CreativeWork
163 sg:pub.10.1007/s11128-017-1701-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091384571
164 https://doi.org/10.1007/s11128-017-1701-0
165 rdf:type schema:CreativeWork
166 sg:pub.10.1007/s11128-017-1776-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093098907
167 https://doi.org/10.1007/s11128-017-1776-7
168 rdf:type schema:CreativeWork
169 sg:pub.10.1134/1.1630126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005696653
170 https://doi.org/10.1134/1.1630126
171 rdf:type schema:CreativeWork
172 sg:pub.10.1134/s1063776106050037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042198188
173 https://doi.org/10.1134/s1063776106050037
174 rdf:type schema:CreativeWork
175 sg:pub.10.1134/s106377610906003x schema:sameAs https://app.dimensions.ai/details/publication/pub.1012217702
176 https://doi.org/10.1134/s106377610906003x
177 rdf:type schema:CreativeWork
178 sg:pub.10.1134/s106377611411020x schema:sameAs https://app.dimensions.ai/details/publication/pub.1002546510
179 https://doi.org/10.1134/s106377611411020x
180 rdf:type schema:CreativeWork
181 grid-institutes:grid.418949.9 schema:alternateName Institute of Problems of Chemical Physics of the Russian Academy of Sciences, 142432, Chernogolovka, Moscow Region, Russia
182 schema:name Institute of Problems of Chemical Physics of the Russian Academy of Sciences, 142432, Chernogolovka, Moscow Region, Russia
183 rdf:type schema:Organization
184 grid-institutes:grid.425358.d schema:alternateName Istituto Nazionale di Ricerca Metrologica, Strada delle Cacce 91, 10135, Torino, Italy
185 schema:name Istituto Nazionale di Ricerca Metrologica, Strada delle Cacce 91, 10135, Torino, Italy
186 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...