Influence of plasma turbulence and exchange-correlation on electron scattering in turbulent plasmas: Spin-interference View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04-02

AUTHORS

Woo-Pyo Hong, Young-Dae Jung

ABSTRACT

The influence of plasma turbulence and exchange corrections due to the spin-channel preference on the electro-electron scattering is investigated in turbulent plasmas. The second-order Eikonal analysis and the effective potential including the far-field interaction term caused by the field fluctuation is applied to obtain the total scattering phase shift in turbulent plasmas. The forward and exchange scattering amplitudes for electron-electron scatterings in the spin-triplet and singlet states are obtained by the Glauber–Eikonal method with the impact-parameter analysis. The differential electron-electron scattering cross section for the total spin states of the scattering system is obtained as a function of the Dupree-turbulence coefficient, impact parameter, collision energy, thermal energy, and Debye length in turbulent plasmas. It is found that the turbulent effect enhances the differential scattering cross section, especially, in forward and backward scattering regions. It is also shown that the differential scattering cross section decreases with an increase of the plasma temperature. In addition, it is found that the influence of spin-dependent quantum interference suppresses the scattering cross section due to the fermionic behavior of plasma electrons. Graphical abstract More... »

PAGES

67

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1140/epjd/e2019-90330-y

DOI

http://dx.doi.org/10.1140/epjd/e2019-90330-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113116978


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Electronics Engineering, Catholic University of Daegu, 38430, Hayang, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.253755.3", 
          "name": [
            "Department of Electronics Engineering, Catholic University of Daegu, 38430, Hayang, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hong", 
        "givenName": "Woo-Pyo", 
        "id": "sg:person.015075527401.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015075527401.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Electrical and Computer Engineering, MC 0407, University of California, San Diego, 9500 Gilman Drive, 92093-0407, La Jolla, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.266100.3", 
          "name": [
            "Department of Applied Physics and Department of Bionanotechnology, Hanyang University, 15588, Ansan, Kyunggi-Do, South Korea", 
            "Department of Electrical and Computer Engineering, MC 0407, University of California, San Diego, 9500 Gilman Drive, 92093-0407, La Jolla, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jung", 
        "givenName": "Young-Dae", 
        "id": "sg:person.012701115765.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012701115765.07"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-642-69195-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038744888", 
          "https://doi.org/10.1007/978-3-642-69195-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-20350-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026010261", 
          "https://doi.org/10.1007/978-3-642-20350-3"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04-02", 
    "datePublishedReg": "2019-04-02", 
    "description": "Abstract\nThe influence of plasma turbulence and exchange corrections due to the spin-channel preference on the electro-electron scattering is investigated in turbulent plasmas. The second-order Eikonal analysis and the effective potential including the far-field interaction term caused by the field fluctuation is applied to obtain the total scattering phase shift in turbulent plasmas. The forward and exchange scattering amplitudes for electron-electron scatterings in the spin-triplet and singlet states are obtained by the Glauber\u2013Eikonal method with the impact-parameter analysis. The differential electron-electron scattering cross section for the total spin states of the scattering system is obtained as a function of the Dupree-turbulence coefficient, impact parameter, collision energy, thermal energy, and Debye length in turbulent plasmas. It is found that the turbulent effect enhances the differential scattering cross section, especially, in forward and backward scattering regions. It is also shown that the differential scattering cross section decreases with an increase of the plasma temperature. In addition, it is found that the influence of spin-dependent quantum interference suppresses the scattering cross section due to the fermionic behavior of plasma electrons.\nGraphical abstract", 
    "genre": "article", 
    "id": "sg:pub.10.1140/epjd/e2019-90330-y", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1398043", 
        "issn": [
          "1155-4312", 
          "1286-4870"
        ], 
        "name": "The European Physical Journal D", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "73"
      }
    ], 
    "keywords": [
      "scattering cross section", 
      "turbulent plasma", 
      "differential scattering cross section", 
      "cross sections", 
      "plasma turbulence", 
      "spin-dependent quantum interference", 
      "exchange scattering amplitudes", 
      "electron-electron scattering", 
      "scattering phase shifts", 
      "impact parameter analysis", 
      "total spin states", 
      "plasma electrons", 
      "quantum interference", 
      "plasma temperature", 
      "collision energy", 
      "field fluctuations", 
      "eikonal analysis", 
      "scattering system", 
      "impact parameter", 
      "fermionic behavior", 
      "spin states", 
      "exchange corrections", 
      "singlet state", 
      "Debye length", 
      "scattering region", 
      "scattering amplitudes", 
      "phase shift", 
      "effective potential", 
      "electrons", 
      "scattering", 
      "plasma", 
      "thermal energy", 
      "turbulent effects", 
      "energy", 
      "turbulence", 
      "sections", 
      "state", 
      "interaction terms", 
      "Abstract Influence", 
      "fluctuations", 
      "amplitude", 
      "correction", 
      "shift", 
      "temperature", 
      "coefficient", 
      "interference", 
      "parameters", 
      "region", 
      "influence", 
      "potential", 
      "length", 
      "system", 
      "function", 
      "method", 
      "terms", 
      "behavior", 
      "effect", 
      "forward", 
      "analysis", 
      "increase", 
      "addition", 
      "preferences", 
      "spin-channel preference", 
      "electro-electron scattering", 
      "second-order Eikonal analysis", 
      "far-field interaction term", 
      "total scattering phase shift", 
      "Glauber\u2013Eikonal method", 
      "differential electron-electron scattering cross section", 
      "electron-electron scattering cross section", 
      "Dupree-turbulence coefficient", 
      "backward scattering regions", 
      "Graphical abstract Influence"
    ], 
    "name": "Influence of plasma turbulence and exchange-correlation on electron scattering in turbulent plasmas: Spin-interference", 
    "pagination": "67", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113116978"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1140/epjd/e2019-90330-y"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1140/epjd/e2019-90330-y", 
      "https://app.dimensions.ai/details/publication/pub.1113116978"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:45", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_815.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1140/epjd/e2019-90330-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epjd/e2019-90330-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epjd/e2019-90330-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epjd/e2019-90330-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epjd/e2019-90330-y'


 

This table displays all metadata directly associated to this object as RDF triples.

150 TRIPLES      22 PREDICATES      100 URIs      90 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1140/epjd/e2019-90330-y schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author N2a64af35ccf64054bec38a2d1d77966d
4 schema:citation sg:pub.10.1007/978-3-642-20350-3
5 sg:pub.10.1007/978-3-642-69195-9
6 schema:datePublished 2019-04-02
7 schema:datePublishedReg 2019-04-02
8 schema:description Abstract The influence of plasma turbulence and exchange corrections due to the spin-channel preference on the electro-electron scattering is investigated in turbulent plasmas. The second-order Eikonal analysis and the effective potential including the far-field interaction term caused by the field fluctuation is applied to obtain the total scattering phase shift in turbulent plasmas. The forward and exchange scattering amplitudes for electron-electron scatterings in the spin-triplet and singlet states are obtained by the Glauber–Eikonal method with the impact-parameter analysis. The differential electron-electron scattering cross section for the total spin states of the scattering system is obtained as a function of the Dupree-turbulence coefficient, impact parameter, collision energy, thermal energy, and Debye length in turbulent plasmas. It is found that the turbulent effect enhances the differential scattering cross section, especially, in forward and backward scattering regions. It is also shown that the differential scattering cross section decreases with an increase of the plasma temperature. In addition, it is found that the influence of spin-dependent quantum interference suppresses the scattering cross section due to the fermionic behavior of plasma electrons. Graphical abstract
9 schema:genre article
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N289e0c43f0944ac5a5ec936ecc9b77da
13 Nf74ad563c9714e4c803adda96b752e9f
14 sg:journal.1398043
15 schema:keywords Abstract Influence
16 Debye length
17 Dupree-turbulence coefficient
18 Glauber–Eikonal method
19 Graphical abstract Influence
20 addition
21 amplitude
22 analysis
23 backward scattering regions
24 behavior
25 coefficient
26 collision energy
27 correction
28 cross sections
29 differential electron-electron scattering cross section
30 differential scattering cross section
31 effect
32 effective potential
33 eikonal analysis
34 electro-electron scattering
35 electron-electron scattering
36 electron-electron scattering cross section
37 electrons
38 energy
39 exchange corrections
40 exchange scattering amplitudes
41 far-field interaction term
42 fermionic behavior
43 field fluctuations
44 fluctuations
45 forward
46 function
47 impact parameter
48 impact parameter analysis
49 increase
50 influence
51 interaction terms
52 interference
53 length
54 method
55 parameters
56 phase shift
57 plasma
58 plasma electrons
59 plasma temperature
60 plasma turbulence
61 potential
62 preferences
63 quantum interference
64 region
65 scattering
66 scattering amplitudes
67 scattering cross section
68 scattering phase shifts
69 scattering region
70 scattering system
71 second-order Eikonal analysis
72 sections
73 shift
74 singlet state
75 spin states
76 spin-channel preference
77 spin-dependent quantum interference
78 state
79 system
80 temperature
81 terms
82 thermal energy
83 total scattering phase shift
84 total spin states
85 turbulence
86 turbulent effects
87 turbulent plasma
88 schema:name Influence of plasma turbulence and exchange-correlation on electron scattering in turbulent plasmas: Spin-interference
89 schema:pagination 67
90 schema:productId N3fe7d563205a44439acb91f40118e45f
91 Nba54028c520a4491a906f8ba7a14fa5d
92 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113116978
93 https://doi.org/10.1140/epjd/e2019-90330-y
94 schema:sdDatePublished 2021-12-01T19:45
95 schema:sdLicense https://scigraph.springernature.com/explorer/license/
96 schema:sdPublisher Nee1cb61f944b433cb223cf1263d453c9
97 schema:url https://doi.org/10.1140/epjd/e2019-90330-y
98 sgo:license sg:explorer/license/
99 sgo:sdDataset articles
100 rdf:type schema:ScholarlyArticle
101 N289e0c43f0944ac5a5ec936ecc9b77da schema:issueNumber 4
102 rdf:type schema:PublicationIssue
103 N2a64af35ccf64054bec38a2d1d77966d rdf:first sg:person.015075527401.01
104 rdf:rest Nbd5553253b104d308c91dd727b780d49
105 N3fe7d563205a44439acb91f40118e45f schema:name doi
106 schema:value 10.1140/epjd/e2019-90330-y
107 rdf:type schema:PropertyValue
108 Nba54028c520a4491a906f8ba7a14fa5d schema:name dimensions_id
109 schema:value pub.1113116978
110 rdf:type schema:PropertyValue
111 Nbd5553253b104d308c91dd727b780d49 rdf:first sg:person.012701115765.07
112 rdf:rest rdf:nil
113 Nee1cb61f944b433cb223cf1263d453c9 schema:name Springer Nature - SN SciGraph project
114 rdf:type schema:Organization
115 Nf74ad563c9714e4c803adda96b752e9f schema:volumeNumber 73
116 rdf:type schema:PublicationVolume
117 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
118 schema:name Physical Sciences
119 rdf:type schema:DefinedTerm
120 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
121 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
122 rdf:type schema:DefinedTerm
123 sg:journal.1398043 schema:issn 1155-4312
124 1286-4870
125 schema:name The European Physical Journal D
126 schema:publisher Springer Nature
127 rdf:type schema:Periodical
128 sg:person.012701115765.07 schema:affiliation grid-institutes:grid.266100.3
129 schema:familyName Jung
130 schema:givenName Young-Dae
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012701115765.07
132 rdf:type schema:Person
133 sg:person.015075527401.01 schema:affiliation grid-institutes:grid.253755.3
134 schema:familyName Hong
135 schema:givenName Woo-Pyo
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015075527401.01
137 rdf:type schema:Person
138 sg:pub.10.1007/978-3-642-20350-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026010261
139 https://doi.org/10.1007/978-3-642-20350-3
140 rdf:type schema:CreativeWork
141 sg:pub.10.1007/978-3-642-69195-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038744888
142 https://doi.org/10.1007/978-3-642-69195-9
143 rdf:type schema:CreativeWork
144 grid-institutes:grid.253755.3 schema:alternateName Department of Electronics Engineering, Catholic University of Daegu, 38430, Hayang, South Korea
145 schema:name Department of Electronics Engineering, Catholic University of Daegu, 38430, Hayang, South Korea
146 rdf:type schema:Organization
147 grid-institutes:grid.266100.3 schema:alternateName Department of Electrical and Computer Engineering, MC 0407, University of California, San Diego, 9500 Gilman Drive, 92093-0407, La Jolla, CA, USA
148 schema:name Department of Applied Physics and Department of Bionanotechnology, Hanyang University, 15588, Ansan, Kyunggi-Do, South Korea
149 Department of Electrical and Computer Engineering, MC 0407, University of California, San Diego, 9500 Gilman Drive, 92093-0407, La Jolla, CA, USA
150 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...