Teleportation simulation of bosonic Gaussian channels: strong and uniform convergence View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-09-25

AUTHORS

Stefano Pirandola, Riccardo Laurenza, Samuel L. Braunstein

ABSTRACT

We consider the Braunstein–Kimble protocol for continuous variable teleportation and its application for the simulation of bosonic channels. We discuss the convergence properties of this protocol under various topologies (strong, uniform, and bounded-uniform) clarifying some typical misinterpretations in the literature. We then show that the teleportation simulation of an arbitrary single-mode Gaussian channel is uniformly convergent to the channel if and only if its noise matrix has full rank. The various forms of convergence are then discussed within adaptive protocols, where the simulation error must be propagated to the output of the protocol by means of a “peeling” argument, following techniques from PLOB [S. Pirandola et al., Nat. Comm. 8, 15043 (2017)]. Finally, as an application of the peeling argument and the various topologies of convergence, we provide complete rigorous proofs for recently claimed strong converse bounds for private communication over Gaussian channels. Graphical abstract More... »

PAGES

162

References to SciGraph publications

  • 2015-11-16. Reply to 'Discrete and continuous variables for measurement-device-independent quantum cryptography' in NATURE PHOTONICS
  • 1978. Mathematical Methods of Classical Mechanics in NONE
  • 2007-03. One-mode quantum Gaussian channels: Structure and quantum capacity in PROBLEMS OF INFORMATION TRANSMISSION
  • 2001-01. A scheme for efficient quantum computation with linear optics in NATURE
  • 2016-04-12. Physics: Unite to build a quantum Internet in NATURE
  • 2008-08. Experimental demonstration of a BDCZ quantum repeater node in NATURE
  • 2011-03-31. Advances in quantum metrology in NATURE PHOTONICS
  • 2008-06-18. The quantum internet in NATURE
  • 2001-11. Long-distance quantum communication with atomic ensembles and linear optics in NATURE
  • 2015-09-29. Advances in quantum teleportation in NATURE PHOTONICS
  • 2015-05-25. High-rate measurement-device-independent quantum cryptography in NATURE PHOTONICS
  • 2017-04-26. Fundamental limits of repeaterless quantum communications in NATURE COMMUNICATIONS
  • 2018-10-15. Finite-resource teleportation stretching for continuous-variable systems in SCIENTIFIC REPORTS
  • 2015-12-16. All-photonic intercity quantum key distribution in NATURE COMMUNICATIONS
  • 2017. Quantum Information Theory, Mathematical Foundation in NONE
  • 2016-04-12. Overcoming lossy channel bounds using a single quantum repeater node in APPLIED PHYSICS B
  • 2014-10-24. Fundamental rate-loss tradeoff for optical quantum key distribution in NATURE COMMUNICATIONS
  • 1999-11. Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations in NATURE
  • 2006-10. Quantum teleportation with continuous variables: A survey in LASER PHYSICS
  • 2015-04-23. Limitations on quantum key repeaters in NATURE COMMUNICATIONS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1140/epjd/e2018-90253-1

    DOI

    http://dx.doi.org/10.1140/epjd/e2018-90253-1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1107279898


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Computer Science and York Centre for Quantum Technologies, University of York, YO10 5GH, York, UK", 
              "id": "http://www.grid.ac/institutes/grid.5685.e", 
              "name": [
                "Computer Science and York Centre for Quantum Technologies, University of York, YO10 5GH, York, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pirandola", 
            "givenName": "Stefano", 
            "id": "sg:person.0735101567.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0735101567.34"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Computer Science and York Centre for Quantum Technologies, University of York, YO10 5GH, York, UK", 
              "id": "http://www.grid.ac/institutes/grid.5685.e", 
              "name": [
                "Computer Science and York Centre for Quantum Technologies, University of York, YO10 5GH, York, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Laurenza", 
            "givenName": "Riccardo", 
            "id": "sg:person.010126330633.65", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010126330633.65"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Computer Science and York Centre for Quantum Technologies, University of York, YO10 5GH, York, UK", 
              "id": "http://www.grid.ac/institutes/grid.5685.e", 
              "name": [
                "Computer Science and York Centre for Quantum Technologies, University of York, YO10 5GH, York, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Braunstein", 
            "givenName": "Samuel L.", 
            "id": "sg:person.0666766367.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0666766367.22"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nature07241", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003705319", 
              "https://doi.org/10.1038/nature07241"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00340-016-6373-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001679219", 
              "https://doi.org/10.1007/s00340-016-6373-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphoton.2015.207", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043596856", 
              "https://doi.org/10.1038/nphoton.2015.207"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphoton.2015.83", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048736084", 
              "https://doi.org/10.1038/nphoton.2015.83"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphoton.2015.154", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040127709", 
              "https://doi.org/10.1038/nphoton.2015.154"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms6235", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026699285", 
              "https://doi.org/10.1038/ncomms6235"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35106500", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023270335", 
              "https://doi.org/10.1038/35106500"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphoton.2011.35", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050502387", 
              "https://doi.org/10.1038/nphoton.2011.35"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-49725-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036373241", 
              "https://doi.org/10.1007/978-3-662-49725-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s1054660x06100057", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027504592", 
              "https://doi.org/10.1134/s1054660x06100057"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms15043", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085064865", 
              "https://doi.org/10.1038/ncomms15043"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35051009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008492203", 
              "https://doi.org/10.1038/35051009"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-018-33332-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107514511", 
              "https://doi.org/10.1038/s41598-018-33332-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/532169a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019788887", 
              "https://doi.org/10.1038/532169a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s0032946007010012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004148019", 
              "https://doi.org/10.1134/s0032946007010012"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms10171", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001778124", 
              "https://doi.org/10.1038/ncomms10171"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature07127", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017984816", 
              "https://doi.org/10.1038/nature07127"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/46503", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026733649", 
              "https://doi.org/10.1038/46503"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4757-1693-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035545882", 
              "https://doi.org/10.1007/978-1-4757-1693-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms7908", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006466215", 
              "https://doi.org/10.1038/ncomms7908"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-09-25", 
        "datePublishedReg": "2018-09-25", 
        "description": "Abstract\nWe consider the Braunstein\u2013Kimble protocol for continuous variable teleportation and its application for the simulation of bosonic channels. We discuss the convergence properties of this protocol under various topologies (strong, uniform, and bounded-uniform) clarifying some typical misinterpretations in the literature. We then show that the teleportation simulation of an arbitrary single-mode Gaussian channel is uniformly convergent to the channel if and only if its noise matrix has full rank. The various forms of convergence are then discussed within adaptive protocols, where the simulation error must be propagated to the output of the protocol by means of a \u201cpeeling\u201d argument, following techniques from PLOB [S. Pirandola et al., Nat. Comm. 8, 15043 (2017)]. Finally, as an application of the peeling argument and the various topologies of convergence, we provide complete rigorous proofs for recently claimed strong converse bounds for private communication over Gaussian channels.\nGraphical abstract", 
        "genre": "article", 
        "id": "sg:pub.10.1140/epjd/e2018-90253-1", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1398043", 
            "issn": [
              "1155-4312", 
              "1286-4870"
            ], 
            "name": "The European Physical Journal D", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "9", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "72"
          }
        ], 
        "keywords": [
          "Gaussian channel", 
          "adaptive protocol", 
          "private communication", 
          "typical misinterpretations", 
          "simulation error", 
          "convergence properties", 
          "rigorous proof", 
          "noise matrix", 
          "protocol", 
          "topology", 
          "continuous variable teleportation", 
          "convergence", 
          "simulations", 
          "applications", 
          "converse bounds", 
          "full rank", 
          "communication", 
          "channels", 
          "PLOB", 
          "error", 
          "proof", 
          "bounds", 
          "form of convergence", 
          "technique", 
          "output", 
          "teleportation", 
          "rank", 
          "means", 
          "matrix", 
          "literature", 
          "convergent", 
          "form", 
          "argument", 
          "misinterpretation", 
          "uniform convergence", 
          "properties", 
          "bosonic channel", 
          "peeling", 
          "Braunstein-Kimble protocol", 
          "variable teleportation", 
          "teleportation simulation", 
          "arbitrary single-mode Gaussian channel", 
          "single-mode Gaussian channel", 
          "topology of convergence", 
          "complete rigorous proofs", 
          "strong converse bounds", 
          "Graphical abstract Teleportation simulation", 
          "abstract Teleportation simulation", 
          "bosonic Gaussian channels"
        ], 
        "name": "Teleportation simulation of bosonic Gaussian channels: strong and uniform convergence", 
        "pagination": "162", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1107279898"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1140/epjd/e2018-90253-1"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1140/epjd/e2018-90253-1", 
          "https://app.dimensions.ai/details/publication/pub.1107279898"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-11-01T18:32", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_769.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1140/epjd/e2018-90253-1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epjd/e2018-90253-1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epjd/e2018-90253-1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epjd/e2018-90253-1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epjd/e2018-90253-1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    197 TRIPLES      22 PREDICATES      93 URIs      66 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1140/epjd/e2018-90253-1 schema:about anzsrc-for:02
    2 schema:author N9354f79c71924616bccb782df5b38bbf
    3 schema:citation sg:pub.10.1007/978-1-4757-1693-1
    4 sg:pub.10.1007/978-3-662-49725-8
    5 sg:pub.10.1007/s00340-016-6373-4
    6 sg:pub.10.1038/35051009
    7 sg:pub.10.1038/35106500
    8 sg:pub.10.1038/46503
    9 sg:pub.10.1038/532169a
    10 sg:pub.10.1038/nature07127
    11 sg:pub.10.1038/nature07241
    12 sg:pub.10.1038/ncomms10171
    13 sg:pub.10.1038/ncomms15043
    14 sg:pub.10.1038/ncomms6235
    15 sg:pub.10.1038/ncomms7908
    16 sg:pub.10.1038/nphoton.2011.35
    17 sg:pub.10.1038/nphoton.2015.154
    18 sg:pub.10.1038/nphoton.2015.207
    19 sg:pub.10.1038/nphoton.2015.83
    20 sg:pub.10.1038/s41598-018-33332-y
    21 sg:pub.10.1134/s0032946007010012
    22 sg:pub.10.1134/s1054660x06100057
    23 schema:datePublished 2018-09-25
    24 schema:datePublishedReg 2018-09-25
    25 schema:description Abstract We consider the Braunstein–Kimble protocol for continuous variable teleportation and its application for the simulation of bosonic channels. We discuss the convergence properties of this protocol under various topologies (strong, uniform, and bounded-uniform) clarifying some typical misinterpretations in the literature. We then show that the teleportation simulation of an arbitrary single-mode Gaussian channel is uniformly convergent to the channel if and only if its noise matrix has full rank. The various forms of convergence are then discussed within adaptive protocols, where the simulation error must be propagated to the output of the protocol by means of a “peeling” argument, following techniques from PLOB [S. Pirandola et al., Nat. Comm. 8, 15043 (2017)]. Finally, as an application of the peeling argument and the various topologies of convergence, we provide complete rigorous proofs for recently claimed strong converse bounds for private communication over Gaussian channels. Graphical abstract
    26 schema:genre article
    27 schema:inLanguage en
    28 schema:isAccessibleForFree true
    29 schema:isPartOf N2e97c034deca4e94ad621ecce57d1a8d
    30 Nf570e67543a14f64853fef42c66aab3d
    31 sg:journal.1398043
    32 schema:keywords Braunstein-Kimble protocol
    33 Gaussian channel
    34 Graphical abstract Teleportation simulation
    35 PLOB
    36 abstract Teleportation simulation
    37 adaptive protocol
    38 applications
    39 arbitrary single-mode Gaussian channel
    40 argument
    41 bosonic Gaussian channels
    42 bosonic channel
    43 bounds
    44 channels
    45 communication
    46 complete rigorous proofs
    47 continuous variable teleportation
    48 convergence
    49 convergence properties
    50 convergent
    51 converse bounds
    52 error
    53 form
    54 form of convergence
    55 full rank
    56 literature
    57 matrix
    58 means
    59 misinterpretation
    60 noise matrix
    61 output
    62 peeling
    63 private communication
    64 proof
    65 properties
    66 protocol
    67 rank
    68 rigorous proof
    69 simulation error
    70 simulations
    71 single-mode Gaussian channel
    72 strong converse bounds
    73 technique
    74 teleportation
    75 teleportation simulation
    76 topology
    77 topology of convergence
    78 typical misinterpretations
    79 uniform convergence
    80 variable teleportation
    81 schema:name Teleportation simulation of bosonic Gaussian channels: strong and uniform convergence
    82 schema:pagination 162
    83 schema:productId N229c4326534f42afbc2247da68520b68
    84 N9646ee8681c749b2819f1044b8396a05
    85 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107279898
    86 https://doi.org/10.1140/epjd/e2018-90253-1
    87 schema:sdDatePublished 2021-11-01T18:32
    88 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    89 schema:sdPublisher N7002c23159c34e2f9b9a97df6d5b4726
    90 schema:url https://doi.org/10.1140/epjd/e2018-90253-1
    91 sgo:license sg:explorer/license/
    92 sgo:sdDataset articles
    93 rdf:type schema:ScholarlyArticle
    94 N229c4326534f42afbc2247da68520b68 schema:name doi
    95 schema:value 10.1140/epjd/e2018-90253-1
    96 rdf:type schema:PropertyValue
    97 N2e97c034deca4e94ad621ecce57d1a8d schema:issueNumber 9
    98 rdf:type schema:PublicationIssue
    99 N600a643969c54e2e93b3a68ce0af1faf rdf:first sg:person.0666766367.22
    100 rdf:rest rdf:nil
    101 N7002c23159c34e2f9b9a97df6d5b4726 schema:name Springer Nature - SN SciGraph project
    102 rdf:type schema:Organization
    103 N9354f79c71924616bccb782df5b38bbf rdf:first sg:person.0735101567.34
    104 rdf:rest Nee17b30728ae467fba8678f882634a2f
    105 N9646ee8681c749b2819f1044b8396a05 schema:name dimensions_id
    106 schema:value pub.1107279898
    107 rdf:type schema:PropertyValue
    108 Nee17b30728ae467fba8678f882634a2f rdf:first sg:person.010126330633.65
    109 rdf:rest N600a643969c54e2e93b3a68ce0af1faf
    110 Nf570e67543a14f64853fef42c66aab3d schema:volumeNumber 72
    111 rdf:type schema:PublicationVolume
    112 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    113 schema:name Physical Sciences
    114 rdf:type schema:DefinedTerm
    115 sg:journal.1398043 schema:issn 1155-4312
    116 1286-4870
    117 schema:name The European Physical Journal D
    118 schema:publisher Springer Nature
    119 rdf:type schema:Periodical
    120 sg:person.010126330633.65 schema:affiliation grid-institutes:grid.5685.e
    121 schema:familyName Laurenza
    122 schema:givenName Riccardo
    123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010126330633.65
    124 rdf:type schema:Person
    125 sg:person.0666766367.22 schema:affiliation grid-institutes:grid.5685.e
    126 schema:familyName Braunstein
    127 schema:givenName Samuel L.
    128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0666766367.22
    129 rdf:type schema:Person
    130 sg:person.0735101567.34 schema:affiliation grid-institutes:grid.5685.e
    131 schema:familyName Pirandola
    132 schema:givenName Stefano
    133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0735101567.34
    134 rdf:type schema:Person
    135 sg:pub.10.1007/978-1-4757-1693-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035545882
    136 https://doi.org/10.1007/978-1-4757-1693-1
    137 rdf:type schema:CreativeWork
    138 sg:pub.10.1007/978-3-662-49725-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036373241
    139 https://doi.org/10.1007/978-3-662-49725-8
    140 rdf:type schema:CreativeWork
    141 sg:pub.10.1007/s00340-016-6373-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001679219
    142 https://doi.org/10.1007/s00340-016-6373-4
    143 rdf:type schema:CreativeWork
    144 sg:pub.10.1038/35051009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008492203
    145 https://doi.org/10.1038/35051009
    146 rdf:type schema:CreativeWork
    147 sg:pub.10.1038/35106500 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023270335
    148 https://doi.org/10.1038/35106500
    149 rdf:type schema:CreativeWork
    150 sg:pub.10.1038/46503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026733649
    151 https://doi.org/10.1038/46503
    152 rdf:type schema:CreativeWork
    153 sg:pub.10.1038/532169a schema:sameAs https://app.dimensions.ai/details/publication/pub.1019788887
    154 https://doi.org/10.1038/532169a
    155 rdf:type schema:CreativeWork
    156 sg:pub.10.1038/nature07127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017984816
    157 https://doi.org/10.1038/nature07127
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1038/nature07241 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003705319
    160 https://doi.org/10.1038/nature07241
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1038/ncomms10171 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001778124
    163 https://doi.org/10.1038/ncomms10171
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1038/ncomms15043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085064865
    166 https://doi.org/10.1038/ncomms15043
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1038/ncomms6235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026699285
    169 https://doi.org/10.1038/ncomms6235
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1038/ncomms7908 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006466215
    172 https://doi.org/10.1038/ncomms7908
    173 rdf:type schema:CreativeWork
    174 sg:pub.10.1038/nphoton.2011.35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050502387
    175 https://doi.org/10.1038/nphoton.2011.35
    176 rdf:type schema:CreativeWork
    177 sg:pub.10.1038/nphoton.2015.154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040127709
    178 https://doi.org/10.1038/nphoton.2015.154
    179 rdf:type schema:CreativeWork
    180 sg:pub.10.1038/nphoton.2015.207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043596856
    181 https://doi.org/10.1038/nphoton.2015.207
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1038/nphoton.2015.83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048736084
    184 https://doi.org/10.1038/nphoton.2015.83
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1038/s41598-018-33332-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1107514511
    187 https://doi.org/10.1038/s41598-018-33332-y
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1134/s0032946007010012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004148019
    190 https://doi.org/10.1134/s0032946007010012
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1134/s1054660x06100057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027504592
    193 https://doi.org/10.1134/s1054660x06100057
    194 rdf:type schema:CreativeWork
    195 grid-institutes:grid.5685.e schema:alternateName Computer Science and York Centre for Quantum Technologies, University of York, YO10 5GH, York, UK
    196 schema:name Computer Science and York Centre for Quantum Technologies, University of York, YO10 5GH, York, UK
    197 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...