Nearby states in non-Hermitian quantum systems II: Three and more states View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-10

AUTHORS

Hichem Eleuch, Ingrid Rotter

ABSTRACT

Using the formalism for the description of open quantum systems by means of a non-Hermitian Hamilton operator, we study the occurrence of dynamical phase transitions as well as their relation to the singular exceptional points (EPs). First, we provide the results of an analytical study for the eigenvalues of three crossing states. These crossing points are of measure zero. Then we show numerical results for the influence of a nearby (“third”) state onto an EP. Since the wavefunctions of the two crossing states are mixed in a finite parameter range around an EP, three states of a physical system will never cross in one point. Instead, the wavefunctions of all three states are mixed in a finite parameter range in which the ranges of the influence of different EPs overlap. We may relate these results to dynamical phase transitions observed recently in different experimental studies. The states on both sides of the phase transition are non-analytically connected. More... »

PAGES

230

References to SciGraph publications

  • 2014-03. Open quantum systems and Dicke superradiance in THE EUROPEAN PHYSICAL JOURNAL D
  • 2014-05. Parity–time-symmetric whispering-gallery microcavities in NATURE PHYSICS
  • 2010-03. Optical physics: Broken symmetry makes light work in NATURE PHYSICS
  • 2015-10. A high flux source of cold strontium atoms in THE EUROPEAN PHYSICAL JOURNAL D
  • 2010-03. Observation of parity–time symmetry in optics in NATURE PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1140/epjd/e2015-60390-2

    DOI

    http://dx.doi.org/10.1140/epjd/e2015-60390-2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1008045396


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Applied Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "McGill University", 
              "id": "https://www.grid.ac/institutes/grid.14709.3b", 
              "name": [
                "Department of Physics, McGill University, H3A 2T8, Montreal, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Eleuch", 
            "givenName": "Hichem", 
            "id": "sg:person.015004746725.60", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015004746725.60"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Max Planck Institute for the Physics of Complex Systems", 
              "id": "https://www.grid.ac/institutes/grid.419560.f", 
              "name": [
                "Max Planck Institute for the Physics of Complex Systems, 01187, Dresden, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rotter", 
            "givenName": "Ingrid", 
            "id": "sg:person.01014732025.58", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014732025.58"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1103/physrevx.2.021003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004846238"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevx.2.021003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004846238"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys1515", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005784874", 
              "https://doi.org/10.1038/nphys1515"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.58.2894", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008075248"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.58.2894", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008075248"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1140/epjd/e2014-40780-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011944101", 
              "https://doi.org/10.1140/epjd/e2014-40780-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1751-8113/45/2/025303", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021784927"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys1612", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031680396", 
              "https://doi.org/10.1038/nphys1612"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys1612", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031680396", 
              "https://doi.org/10.1038/nphys1612"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.90.053817", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035801556"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.90.053817", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035801556"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1140/epjd/e2015-60288-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040010803", 
              "https://doi.org/10.1140/epjd/e2015-60288-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.88.062111", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041174168"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.88.062111", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041174168"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys2927", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043975585", 
              "https://doi.org/10.1038/nphys2927"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.60.114", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051921887"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.60.114", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051921887"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1751-8113/42/15/153001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052430997"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1751-8113/42/15/153001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052430997"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0305-4470/38/9/l03", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059079477"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.93.99", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060461988"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.93.99", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060461988"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevc.47.1086", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060667209"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevc.47.1086", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060667209"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.100.030402", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060752718"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.100.030402", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060752718"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.100.103904", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060753052"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.100.103904", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060753052"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.103.093902", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060755924"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.103.093902", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060755924"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1258004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062470246"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/ol.32.002632", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065225345"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2015-10", 
        "datePublishedReg": "2015-10-01", 
        "description": "Using the formalism for the description of open quantum systems by means of a non-Hermitian Hamilton operator, we study the occurrence of dynamical phase transitions as well as their relation to the singular exceptional points (EPs). First, we provide the results of an analytical study for the eigenvalues of three crossing states. These crossing points are of measure zero. Then we show numerical results for the influence of a nearby (\u201cthird\u201d) state onto an EP. Since the wavefunctions of the two crossing states are mixed in a finite parameter range around an EP, three states of a physical system will never cross in one point. Instead, the wavefunctions of all three states are mixed in a finite parameter range in which the ranges of the influence of different EPs overlap. We may relate these results to dynamical phase transitions observed recently in different experimental studies. The states on both sides of the phase transition are non-analytically connected. ", 
        "genre": "research_article", 
        "id": "sg:pub.10.1140/epjd/e2015-60390-2", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1295077", 
            "issn": [
              "1434-6060", 
              "1434-6079"
            ], 
            "name": "The European Physical Journal D", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "10", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "69"
          }
        ], 
        "name": "Nearby states in non-Hermitian quantum systems II: Three and more states", 
        "pagination": "230", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "2654534b43e5715268385fb5326affc737aae95a1c22b21595b8bdd914904241"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1140/epjd/e2015-60390-2"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1008045396"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1140/epjd/e2015-60390-2", 
          "https://app.dimensions.ai/details/publication/pub.1008045396"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T01:05", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000503.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1140%2Fepjd%2Fe2015-60390-2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epjd/e2015-60390-2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epjd/e2015-60390-2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epjd/e2015-60390-2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epjd/e2015-60390-2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    136 TRIPLES      21 PREDICATES      47 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1140/epjd/e2015-60390-2 schema:about anzsrc-for:01
    2 anzsrc-for:0102
    3 schema:author Ne5f64e5a5f5f4b2b841d4bf3e5544fca
    4 schema:citation sg:pub.10.1038/nphys1515
    5 sg:pub.10.1038/nphys1612
    6 sg:pub.10.1038/nphys2927
    7 sg:pub.10.1140/epjd/e2014-40780-8
    8 sg:pub.10.1140/epjd/e2015-60288-y
    9 https://doi.org/10.1088/0305-4470/38/9/l03
    10 https://doi.org/10.1088/1751-8113/42/15/153001
    11 https://doi.org/10.1088/1751-8113/45/2/025303
    12 https://doi.org/10.1103/physrev.93.99
    13 https://doi.org/10.1103/physreva.88.062111
    14 https://doi.org/10.1103/physreva.90.053817
    15 https://doi.org/10.1103/physrevc.47.1086
    16 https://doi.org/10.1103/physreve.58.2894
    17 https://doi.org/10.1103/physreve.60.114
    18 https://doi.org/10.1103/physrevlett.100.030402
    19 https://doi.org/10.1103/physrevlett.100.103904
    20 https://doi.org/10.1103/physrevlett.103.093902
    21 https://doi.org/10.1103/physrevx.2.021003
    22 https://doi.org/10.1126/science.1258004
    23 https://doi.org/10.1364/ol.32.002632
    24 schema:datePublished 2015-10
    25 schema:datePublishedReg 2015-10-01
    26 schema:description Using the formalism for the description of open quantum systems by means of a non-Hermitian Hamilton operator, we study the occurrence of dynamical phase transitions as well as their relation to the singular exceptional points (EPs). First, we provide the results of an analytical study for the eigenvalues of three crossing states. These crossing points are of measure zero. Then we show numerical results for the influence of a nearby (“third”) state onto an EP. Since the wavefunctions of the two crossing states are mixed in a finite parameter range around an EP, three states of a physical system will never cross in one point. Instead, the wavefunctions of all three states are mixed in a finite parameter range in which the ranges of the influence of different EPs overlap. We may relate these results to dynamical phase transitions observed recently in different experimental studies. The states on both sides of the phase transition are non-analytically connected.
    27 schema:genre research_article
    28 schema:inLanguage en
    29 schema:isAccessibleForFree false
    30 schema:isPartOf N68552cb2141e4b80ba53a73fd3110186
    31 Na2cd3fc87b4b45beb24b821dfae8cd58
    32 sg:journal.1295077
    33 schema:name Nearby states in non-Hermitian quantum systems II: Three and more states
    34 schema:pagination 230
    35 schema:productId N10f20f2962614dc69d868f29298c265f
    36 N9eb75a5ecab0478484a7249559371d4f
    37 Ncc72f70c05654afeacc552712368c10e
    38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008045396
    39 https://doi.org/10.1140/epjd/e2015-60390-2
    40 schema:sdDatePublished 2019-04-11T01:05
    41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    42 schema:sdPublisher N8007a0ccad9e4db5847a1ea34cdeed80
    43 schema:url http://link.springer.com/10.1140%2Fepjd%2Fe2015-60390-2
    44 sgo:license sg:explorer/license/
    45 sgo:sdDataset articles
    46 rdf:type schema:ScholarlyArticle
    47 N10f20f2962614dc69d868f29298c265f schema:name readcube_id
    48 schema:value 2654534b43e5715268385fb5326affc737aae95a1c22b21595b8bdd914904241
    49 rdf:type schema:PropertyValue
    50 N52f6b02bd95d4ad69d3ffbb01d5fac4d rdf:first sg:person.01014732025.58
    51 rdf:rest rdf:nil
    52 N68552cb2141e4b80ba53a73fd3110186 schema:volumeNumber 69
    53 rdf:type schema:PublicationVolume
    54 N8007a0ccad9e4db5847a1ea34cdeed80 schema:name Springer Nature - SN SciGraph project
    55 rdf:type schema:Organization
    56 N9eb75a5ecab0478484a7249559371d4f schema:name dimensions_id
    57 schema:value pub.1008045396
    58 rdf:type schema:PropertyValue
    59 Na2cd3fc87b4b45beb24b821dfae8cd58 schema:issueNumber 10
    60 rdf:type schema:PublicationIssue
    61 Ncc72f70c05654afeacc552712368c10e schema:name doi
    62 schema:value 10.1140/epjd/e2015-60390-2
    63 rdf:type schema:PropertyValue
    64 Ne5f64e5a5f5f4b2b841d4bf3e5544fca rdf:first sg:person.015004746725.60
    65 rdf:rest N52f6b02bd95d4ad69d3ffbb01d5fac4d
    66 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    67 schema:name Mathematical Sciences
    68 rdf:type schema:DefinedTerm
    69 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
    70 schema:name Applied Mathematics
    71 rdf:type schema:DefinedTerm
    72 sg:journal.1295077 schema:issn 1434-6060
    73 1434-6079
    74 schema:name The European Physical Journal D
    75 rdf:type schema:Periodical
    76 sg:person.01014732025.58 schema:affiliation https://www.grid.ac/institutes/grid.419560.f
    77 schema:familyName Rotter
    78 schema:givenName Ingrid
    79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014732025.58
    80 rdf:type schema:Person
    81 sg:person.015004746725.60 schema:affiliation https://www.grid.ac/institutes/grid.14709.3b
    82 schema:familyName Eleuch
    83 schema:givenName Hichem
    84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015004746725.60
    85 rdf:type schema:Person
    86 sg:pub.10.1038/nphys1515 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005784874
    87 https://doi.org/10.1038/nphys1515
    88 rdf:type schema:CreativeWork
    89 sg:pub.10.1038/nphys1612 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031680396
    90 https://doi.org/10.1038/nphys1612
    91 rdf:type schema:CreativeWork
    92 sg:pub.10.1038/nphys2927 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043975585
    93 https://doi.org/10.1038/nphys2927
    94 rdf:type schema:CreativeWork
    95 sg:pub.10.1140/epjd/e2014-40780-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011944101
    96 https://doi.org/10.1140/epjd/e2014-40780-8
    97 rdf:type schema:CreativeWork
    98 sg:pub.10.1140/epjd/e2015-60288-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1040010803
    99 https://doi.org/10.1140/epjd/e2015-60288-y
    100 rdf:type schema:CreativeWork
    101 https://doi.org/10.1088/0305-4470/38/9/l03 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059079477
    102 rdf:type schema:CreativeWork
    103 https://doi.org/10.1088/1751-8113/42/15/153001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052430997
    104 rdf:type schema:CreativeWork
    105 https://doi.org/10.1088/1751-8113/45/2/025303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021784927
    106 rdf:type schema:CreativeWork
    107 https://doi.org/10.1103/physrev.93.99 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060461988
    108 rdf:type schema:CreativeWork
    109 https://doi.org/10.1103/physreva.88.062111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041174168
    110 rdf:type schema:CreativeWork
    111 https://doi.org/10.1103/physreva.90.053817 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035801556
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.1103/physrevc.47.1086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060667209
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1103/physreve.58.2894 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008075248
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1103/physreve.60.114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051921887
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1103/physrevlett.100.030402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060752718
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1103/physrevlett.100.103904 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060753052
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1103/physrevlett.103.093902 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060755924
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1103/physrevx.2.021003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004846238
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1126/science.1258004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062470246
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1364/ol.32.002632 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065225345
    130 rdf:type schema:CreativeWork
    131 https://www.grid.ac/institutes/grid.14709.3b schema:alternateName McGill University
    132 schema:name Department of Physics, McGill University, H3A 2T8, Montreal, Canada
    133 rdf:type schema:Organization
    134 https://www.grid.ac/institutes/grid.419560.f schema:alternateName Max Planck Institute for the Physics of Complex Systems
    135 schema:name Max Planck Institute for the Physics of Complex Systems, 01187, Dresden, Germany
    136 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...