Modified Schrödinger dynamics with attractive densities View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-06

AUTHORS

Franck Laloë

ABSTRACT

The linear Schrödinger equation does not predict that macroscopic bodies should be located at one place only, or that the outcome of a measurement shoud be unique. Quantum mechanics textbooks generally solve the problem by introducing the projection postulate, which forces definite values to emerge during measurements; many other interpretations have also been proposed. Here, in the same spirit as the GRW and CSL theories, we modify the Schrödinger equation in a way that efficiently cancels macroscopic density fluctuations in space. Nevertheless, we do not assume a stochastic dynamics as in GRW or CSL theories. Instead, we propose a deterministic evolution that includes an attraction term towards the averaged density in space of the de Broglie-Bohm position of particles, and show that this is sufficient to ensure macroscopic uniqueness and compatibility with the Born rule. The state vector can then be seen as directly related to physical reality. More... »

PAGES

162

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1140/epjd/e2015-60222-5

DOI

http://dx.doi.org/10.1140/epjd/e2015-60222-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1004364241


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Kastler-Brossel Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.462576.4", 
          "name": [
            "LKB, ENS and CNRS, 24 rue Lhomond, 75005, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lalo\u00eb", 
        "givenName": "Franck", 
        "id": "sg:person.012044650117.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012044650117.45"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevlett.90.120404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003438488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.90.120404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003438488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01491914", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004538413", 
          "https://doi.org/10.1007/bf01491914"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.75.715", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006328423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.75.715", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006328423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/14/15/201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006788225"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspa.2011.0598", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011784841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01491987", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020854696", 
          "https://doi.org/10.1007/bf01491987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01491987", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020854696", 
          "https://doi.org/10.1007/bf01491987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1021831013", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-30690-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021831013", 
          "https://doi.org/10.1007/978-3-642-30690-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-30690-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021831013", 
          "https://doi.org/10.1007/978-3-642-30690-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0370-1573(03)00103-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030317645"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0370-1573(03)00103-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030317645"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1751-8113/44/47/478001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034052547"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1751-8113/44/27/275303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042207649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01397280", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045169585", 
          "https://doi.org/10.1007/bf01397280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01491891", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049769603", 
          "https://doi.org/10.1007/bf01491891"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/jphysrad:0192700805022500", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057010288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.525895", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058102914"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/14/9/021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059065802"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bjps/axn012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059433800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.85.166", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060458813"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.85.166", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060458813"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.85.180", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060458814"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.85.180", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060458814"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.39.2277", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060478767"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.39.2277", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060478767"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.42.78", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060482682"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.42.78", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060482682"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.34.470", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060694259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.34.470", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060694259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.52.1657", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060789856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.52.1657", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060789856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.82.871", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060819770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.82.871", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060819770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.83.3112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060820176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.83.3112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060820176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.29.454", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060837642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.29.454", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060837642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511622687", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098708061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/9781400854554", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103222342"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-06", 
    "datePublishedReg": "2015-06-01", 
    "description": "The linear Schr\u00f6dinger equation does not predict that macroscopic bodies should be located at one place only, or that the outcome of a measurement shoud be unique. Quantum mechanics textbooks generally solve the problem by introducing the projection postulate, which forces definite values to emerge during measurements; many other interpretations have also been proposed. Here, in the same spirit as the GRW and CSL theories, we modify the Schr\u00f6dinger equation in a way that efficiently cancels macroscopic density fluctuations in space. Nevertheless, we do not assume a stochastic dynamics as in GRW or CSL theories. Instead, we propose a deterministic evolution that includes an attraction term towards the averaged density in space of the de Broglie-Bohm position of particles, and show that this is sufficient to ensure macroscopic uniqueness and compatibility with the Born rule. The state vector can then be seen as directly related to physical reality.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1140/epjd/e2015-60222-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1295077", 
        "issn": [
          "1434-6060", 
          "1434-6079"
        ], 
        "name": "The European Physical Journal D", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "69"
      }
    ], 
    "name": "Modified Schr\u00f6dinger dynamics with attractive densities", 
    "pagination": "162", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "14cb92355a75f3daae8205aae44768da4cdeae0eab64fdb15ca9ccc3ee0a8825"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1140/epjd/e2015-60222-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1004364241"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1140/epjd/e2015-60222-5", 
      "https://app.dimensions.ai/details/publication/pub.1004364241"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000580.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1140%2Fepjd%2Fe2015-60222-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epjd/e2015-60222-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epjd/e2015-60222-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epjd/e2015-60222-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epjd/e2015-60222-5'


 

This table displays all metadata directly associated to this object as RDF triples.

149 TRIPLES      21 PREDICATES      55 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1140/epjd/e2015-60222-5 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author N0eea08a65ea24fa0917ca0d7d2daf3c7
4 schema:citation sg:pub.10.1007/978-3-642-30690-7
5 sg:pub.10.1007/bf01397280
6 sg:pub.10.1007/bf01491891
7 sg:pub.10.1007/bf01491914
8 sg:pub.10.1007/bf01491987
9 https://app.dimensions.ai/details/publication/pub.1021831013
10 https://doi.org/10.1016/s0370-1573(03)00103-0
11 https://doi.org/10.1017/cbo9780511622687
12 https://doi.org/10.1051/jphysrad:0192700805022500
13 https://doi.org/10.1063/1.525895
14 https://doi.org/10.1088/0305-4470/14/9/021
15 https://doi.org/10.1088/0953-8984/14/15/201
16 https://doi.org/10.1088/1751-8113/44/27/275303
17 https://doi.org/10.1088/1751-8113/44/47/478001
18 https://doi.org/10.1093/bjps/axn012
19 https://doi.org/10.1098/rspa.2011.0598
20 https://doi.org/10.1103/physrev.85.166
21 https://doi.org/10.1103/physrev.85.180
22 https://doi.org/10.1103/physreva.39.2277
23 https://doi.org/10.1103/physreva.42.78
24 https://doi.org/10.1103/physrevd.34.470
25 https://doi.org/10.1103/physrevlett.52.1657
26 https://doi.org/10.1103/physrevlett.82.871
27 https://doi.org/10.1103/physrevlett.83.3112
28 https://doi.org/10.1103/physrevlett.90.120404
29 https://doi.org/10.1103/revmodphys.29.454
30 https://doi.org/10.1103/revmodphys.75.715
31 https://doi.org/10.1515/9781400854554
32 schema:datePublished 2015-06
33 schema:datePublishedReg 2015-06-01
34 schema:description The linear Schrödinger equation does not predict that macroscopic bodies should be located at one place only, or that the outcome of a measurement shoud be unique. Quantum mechanics textbooks generally solve the problem by introducing the projection postulate, which forces definite values to emerge during measurements; many other interpretations have also been proposed. Here, in the same spirit as the GRW and CSL theories, we modify the Schrödinger equation in a way that efficiently cancels macroscopic density fluctuations in space. Nevertheless, we do not assume a stochastic dynamics as in GRW or CSL theories. Instead, we propose a deterministic evolution that includes an attraction term towards the averaged density in space of the de Broglie-Bohm position of particles, and show that this is sufficient to ensure macroscopic uniqueness and compatibility with the Born rule. The state vector can then be seen as directly related to physical reality.
35 schema:genre research_article
36 schema:inLanguage en
37 schema:isAccessibleForFree true
38 schema:isPartOf Nf68e0b11d83846b8a54b0d531ee7c418
39 Nff76700e1f234a9184ab54e699c1040b
40 sg:journal.1295077
41 schema:name Modified Schrödinger dynamics with attractive densities
42 schema:pagination 162
43 schema:productId N5b7c60d168734da284e1bfd1b335856f
44 N5f6d9cf2090a45abbd51d3c34a7b6ed3
45 Nc89b747efc24400a954c2bfbe983a5ee
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004364241
47 https://doi.org/10.1140/epjd/e2015-60222-5
48 schema:sdDatePublished 2019-04-10T16:01
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher N7fb961f0ced14551a6a2a93fb1aa650b
51 schema:url http://link.springer.com/10.1140%2Fepjd%2Fe2015-60222-5
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N0eea08a65ea24fa0917ca0d7d2daf3c7 rdf:first sg:person.012044650117.45
56 rdf:rest rdf:nil
57 N5b7c60d168734da284e1bfd1b335856f schema:name dimensions_id
58 schema:value pub.1004364241
59 rdf:type schema:PropertyValue
60 N5f6d9cf2090a45abbd51d3c34a7b6ed3 schema:name readcube_id
61 schema:value 14cb92355a75f3daae8205aae44768da4cdeae0eab64fdb15ca9ccc3ee0a8825
62 rdf:type schema:PropertyValue
63 N7fb961f0ced14551a6a2a93fb1aa650b schema:name Springer Nature - SN SciGraph project
64 rdf:type schema:Organization
65 Nc89b747efc24400a954c2bfbe983a5ee schema:name doi
66 schema:value 10.1140/epjd/e2015-60222-5
67 rdf:type schema:PropertyValue
68 Nf68e0b11d83846b8a54b0d531ee7c418 schema:issueNumber 6
69 rdf:type schema:PublicationIssue
70 Nff76700e1f234a9184ab54e699c1040b schema:volumeNumber 69
71 rdf:type schema:PublicationVolume
72 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
73 schema:name Physical Sciences
74 rdf:type schema:DefinedTerm
75 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
76 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
77 rdf:type schema:DefinedTerm
78 sg:journal.1295077 schema:issn 1434-6060
79 1434-6079
80 schema:name The European Physical Journal D
81 rdf:type schema:Periodical
82 sg:person.012044650117.45 schema:affiliation https://www.grid.ac/institutes/grid.462576.4
83 schema:familyName Laloë
84 schema:givenName Franck
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012044650117.45
86 rdf:type schema:Person
87 sg:pub.10.1007/978-3-642-30690-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021831013
88 https://doi.org/10.1007/978-3-642-30690-7
89 rdf:type schema:CreativeWork
90 sg:pub.10.1007/bf01397280 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045169585
91 https://doi.org/10.1007/bf01397280
92 rdf:type schema:CreativeWork
93 sg:pub.10.1007/bf01491891 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049769603
94 https://doi.org/10.1007/bf01491891
95 rdf:type schema:CreativeWork
96 sg:pub.10.1007/bf01491914 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004538413
97 https://doi.org/10.1007/bf01491914
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/bf01491987 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020854696
100 https://doi.org/10.1007/bf01491987
101 rdf:type schema:CreativeWork
102 https://app.dimensions.ai/details/publication/pub.1021831013 schema:CreativeWork
103 https://doi.org/10.1016/s0370-1573(03)00103-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030317645
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1017/cbo9780511622687 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098708061
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1051/jphysrad:0192700805022500 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057010288
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1063/1.525895 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058102914
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1088/0305-4470/14/9/021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059065802
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1088/0953-8984/14/15/201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006788225
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1088/1751-8113/44/27/275303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042207649
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1088/1751-8113/44/47/478001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034052547
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1093/bjps/axn012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059433800
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1098/rspa.2011.0598 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011784841
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1103/physrev.85.166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060458813
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1103/physrev.85.180 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060458814
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1103/physreva.39.2277 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060478767
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1103/physreva.42.78 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060482682
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1103/physrevd.34.470 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060694259
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1103/physrevlett.52.1657 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060789856
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1103/physrevlett.82.871 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060819770
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1103/physrevlett.83.3112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060820176
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1103/physrevlett.90.120404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003438488
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1103/revmodphys.29.454 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060837642
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1103/revmodphys.75.715 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006328423
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1515/9781400854554 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103222342
146 rdf:type schema:CreativeWork
147 https://www.grid.ac/institutes/grid.462576.4 schema:alternateName Kastler-Brossel Laboratory
148 schema:name LKB, ENS and CNRS, 24 rue Lhomond, 75005, Paris, France
149 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...