High-order harmonic generation enhanced by coherent population return View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-05

AUTHORS

Alexis Chacón, Marcelo F. Ciappina, Alvaro Peralta Conde

ABSTRACT

We present computations of high-order harmonic generation in atoms by using the coherent population return technique. This approach consists in two steps: firstly, the active medium is prepared in a coherent superposition of two bound states using a relatively long laser pulse which has a photon energy close to the energy gap between the states and then, the system is driven by an ultrashort infrared laser pulse. We demonstrate, by employing the numerical solution of the time-dependent Schrödinger equation in one and three dimensions, that using this scheme it is possible to enhance the harmonic conversion efficiency by several orders of magnitude. Our numerical results show that, on one hand the increase in ionization efficiency is responsible of an enhancement in the harmonic signal and on the other hand, the coherent preparation of the medium produces a much richer structure of the harmonic emission. More... »

PAGES

133

Identifiers

URI

http://scigraph.springernature.com/pub.10.1140/epjd/e2015-60104-x

DOI

http://dx.doi.org/10.1140/epjd/e2015-60104-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1037987504


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Salamanca", 
          "id": "https://www.grid.ac/institutes/grid.11762.33", 
          "name": [
            "ICFO-Institut de Ci\u00e9ncies Fot\u00f3niques, Mediterranean Technology Park, 08860, Castelldefels (Barcelona), Spain", 
            "Grupo de Investigaci\u00f3n en \u00d3ptica Extrema, Universidad de Salamanca, 37008, Salamanca, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chac\u00f3n", 
        "givenName": "Alexis", 
        "id": "sg:person.013014265351.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013014265351.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute of Quantum Optics", 
          "id": "https://www.grid.ac/institutes/grid.450272.6", 
          "name": [
            "Max-Planck-Institut f\u00fcr Quantenoptik, Hans-Kopfermann-Strasse 1, 85748, Garching, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ciappina", 
        "givenName": "Marcelo F.", 
        "id": "sg:person.01306704372.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01306704372.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Spanish Center for Pulsed Lasers", 
          "id": "https://www.grid.ac/institutes/grid.494576.d", 
          "name": [
            "Centro de L\u00e1seres Pulsados (CLPU), Parque Cient\u00edfico USAL, 37185, Villamayor, Salamanca, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Conde", 
        "givenName": "Alvaro Peralta", 
        "id": "sg:person.01035135244.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01035135244.58"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0030-4018(01)01495-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001201653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-9991(82)90091-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001274121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0009-2614(86)80262-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003932040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-4075/42/13/134004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011285683"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-4075/42/13/134004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011285683"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10910-005-9042-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013089006", 
          "https://doi.org/10.1007/s10910-005-9042-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10910-005-9042-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013089006", 
          "https://doi.org/10.1007/s10910-005-9042-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06229", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016009275", 
          "https://doi.org/10.1038/nature06229"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/09500349808231909", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017031244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/09500340500167669", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017070272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physleta.2012.03.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017183562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.elspec.2012.12.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017685952"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01331132", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018786378", 
          "https://doi.org/10.1007/bf01331132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.110.053001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020061395"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.110.053001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020061395"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.72.063412", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022373339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.72.063412", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022373339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.65.023404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023762002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.65.023404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023762002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05648", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029584101", 
          "https://doi.org/10.1038/nature05648"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05648", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029584101", 
          "https://doi.org/10.1038/nature05648"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.4.021028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034618955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.4.021028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034618955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1946", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037245776", 
          "https://doi.org/10.1038/nphys1946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038126500", 
          "https://doi.org/10.1038/nature01143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038126500", 
          "https://doi.org/10.1038/nature01143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms5003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041603226", 
          "https://doi.org/10.1038/ncomms5003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.111.243005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049595550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.111.243005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049595550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp803548c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056108509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp803548c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056108509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.881806", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058127292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.38.6000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060478481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.38.6000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060478481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.49.2117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060488303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.49.2117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060488303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.50.r3585", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060489841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.50.r3585", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060489841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.52.504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060491001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.52.504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060491001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.52.525", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060491004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.52.525", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060491004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.53.1187", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060491151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.53.1187", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060491151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.53.r1962", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060491663"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.53.r1962", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060491663"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.68.043405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060499499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.68.043405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060499499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.72.053808", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060501722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.72.053808", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060501722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.72.053808", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060501722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.79.061405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060505848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.79.061405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060505848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.81.033412", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060507262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.81.033412", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060507262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.82.063817", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060508264"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.82.063817", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060508264"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.88.033423", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060511474"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.88.033423", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060511474"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.257402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060756387"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.257402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060756387"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.71.1994", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060807615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.71.1994", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060807615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.083003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060829952"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.083003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060829952"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.113906", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060830049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.113906", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060830049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.243004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060833243"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.243004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060833243"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.70.1003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.70.1003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.19.019430", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065197857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.35.003664", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065229347"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-05", 
    "datePublishedReg": "2015-05-01", 
    "description": "We present computations of high-order harmonic generation in atoms by using the coherent population return technique. This approach consists in two steps: firstly, the active medium is prepared in a coherent superposition of two bound states using a relatively long laser pulse which has a photon energy close to the energy gap between the states and then, the system is driven by an ultrashort infrared laser pulse. We demonstrate, by employing the numerical solution of the time-dependent Schr\u00f6dinger equation in one and three dimensions, that using this scheme it is possible to enhance the harmonic conversion efficiency by several orders of magnitude. Our numerical results show that, on one hand the increase in ionization efficiency is responsible of an enhancement in the harmonic signal and on the other hand, the coherent preparation of the medium produces a much richer structure of the harmonic emission. ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1140/epjd/e2015-60104-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1295077", 
        "issn": [
          "1434-6060", 
          "1434-6079"
        ], 
        "name": "The European Physical Journal D", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "69"
      }
    ], 
    "name": "High-order harmonic generation enhanced by coherent population return", 
    "pagination": "133", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b4f5c515ff806dffef48d439504305734336b9da556baabdf010cd74cd84f44c"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1140/epjd/e2015-60104-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1037987504"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1140/epjd/e2015-60104-x", 
      "https://app.dimensions.ai/details/publication/pub.1037987504"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000506.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1140%2Fepjd%2Fe2015-60104-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epjd/e2015-60104-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epjd/e2015-60104-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epjd/e2015-60104-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epjd/e2015-60104-x'


 

This table displays all metadata directly associated to this object as RDF triples.

218 TRIPLES      21 PREDICATES      70 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1140/epjd/e2015-60104-x schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author Nc289315271c54697abdb7c06313b3de8
4 schema:citation sg:pub.10.1007/bf01331132
5 sg:pub.10.1007/s10910-005-9042-0
6 sg:pub.10.1038/nature01143
7 sg:pub.10.1038/nature05648
8 sg:pub.10.1038/nature06229
9 sg:pub.10.1038/ncomms5003
10 sg:pub.10.1038/nphys1946
11 https://doi.org/10.1016/0009-2614(86)80262-7
12 https://doi.org/10.1016/0021-9991(82)90091-2
13 https://doi.org/10.1016/j.elspec.2012.12.002
14 https://doi.org/10.1016/j.physleta.2012.03.031
15 https://doi.org/10.1016/s0030-4018(01)01495-x
16 https://doi.org/10.1021/jp803548c
17 https://doi.org/10.1063/1.881806
18 https://doi.org/10.1080/09500340500167669
19 https://doi.org/10.1080/09500349808231909
20 https://doi.org/10.1088/0953-4075/42/13/134004
21 https://doi.org/10.1103/physreva.38.6000
22 https://doi.org/10.1103/physreva.49.2117
23 https://doi.org/10.1103/physreva.50.r3585
24 https://doi.org/10.1103/physreva.52.504
25 https://doi.org/10.1103/physreva.52.525
26 https://doi.org/10.1103/physreva.53.1187
27 https://doi.org/10.1103/physreva.53.r1962
28 https://doi.org/10.1103/physreva.65.023404
29 https://doi.org/10.1103/physreva.68.043405
30 https://doi.org/10.1103/physreva.72.053808
31 https://doi.org/10.1103/physreva.72.063412
32 https://doi.org/10.1103/physreva.79.061405
33 https://doi.org/10.1103/physreva.81.033412
34 https://doi.org/10.1103/physreva.82.063817
35 https://doi.org/10.1103/physreva.88.033423
36 https://doi.org/10.1103/physrevlett.103.257402
37 https://doi.org/10.1103/physrevlett.110.053001
38 https://doi.org/10.1103/physrevlett.111.243005
39 https://doi.org/10.1103/physrevlett.71.1994
40 https://doi.org/10.1103/physrevlett.94.083003
41 https://doi.org/10.1103/physrevlett.94.113906
42 https://doi.org/10.1103/physrevlett.97.243004
43 https://doi.org/10.1103/physrevx.4.021028
44 https://doi.org/10.1103/revmodphys.70.1003
45 https://doi.org/10.1364/oe.19.019430
46 https://doi.org/10.1364/ol.35.003664
47 schema:datePublished 2015-05
48 schema:datePublishedReg 2015-05-01
49 schema:description We present computations of high-order harmonic generation in atoms by using the coherent population return technique. This approach consists in two steps: firstly, the active medium is prepared in a coherent superposition of two bound states using a relatively long laser pulse which has a photon energy close to the energy gap between the states and then, the system is driven by an ultrashort infrared laser pulse. We demonstrate, by employing the numerical solution of the time-dependent Schrödinger equation in one and three dimensions, that using this scheme it is possible to enhance the harmonic conversion efficiency by several orders of magnitude. Our numerical results show that, on one hand the increase in ionization efficiency is responsible of an enhancement in the harmonic signal and on the other hand, the coherent preparation of the medium produces a much richer structure of the harmonic emission.
50 schema:genre research_article
51 schema:inLanguage en
52 schema:isAccessibleForFree false
53 schema:isPartOf N96edb927ac744d1dbe3b0d06e0ddeb83
54 Nff755391e4d64178a38102a6a6f27196
55 sg:journal.1295077
56 schema:name High-order harmonic generation enhanced by coherent population return
57 schema:pagination 133
58 schema:productId N5eaf971eebd74961b7359dc2c32cf8bc
59 N8e00b829c03b4192a57e9fc062e4c59c
60 N97adb31a3a4f45f4b90e1b33f8695523
61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037987504
62 https://doi.org/10.1140/epjd/e2015-60104-x
63 schema:sdDatePublished 2019-04-11T01:05
64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
65 schema:sdPublisher N49a7ae628e424bf4a07e2c5a8e72a3c6
66 schema:url http://link.springer.com/10.1140%2Fepjd%2Fe2015-60104-x
67 sgo:license sg:explorer/license/
68 sgo:sdDataset articles
69 rdf:type schema:ScholarlyArticle
70 N2d5f2e6300c64a8180e823da14bce0e9 rdf:first sg:person.01306704372.21
71 rdf:rest N50c84893fe8c427a844864e031ff7f3c
72 N49a7ae628e424bf4a07e2c5a8e72a3c6 schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 N50c84893fe8c427a844864e031ff7f3c rdf:first sg:person.01035135244.58
75 rdf:rest rdf:nil
76 N5eaf971eebd74961b7359dc2c32cf8bc schema:name doi
77 schema:value 10.1140/epjd/e2015-60104-x
78 rdf:type schema:PropertyValue
79 N8e00b829c03b4192a57e9fc062e4c59c schema:name readcube_id
80 schema:value b4f5c515ff806dffef48d439504305734336b9da556baabdf010cd74cd84f44c
81 rdf:type schema:PropertyValue
82 N96edb927ac744d1dbe3b0d06e0ddeb83 schema:volumeNumber 69
83 rdf:type schema:PublicationVolume
84 N97adb31a3a4f45f4b90e1b33f8695523 schema:name dimensions_id
85 schema:value pub.1037987504
86 rdf:type schema:PropertyValue
87 Nc289315271c54697abdb7c06313b3de8 rdf:first sg:person.013014265351.24
88 rdf:rest N2d5f2e6300c64a8180e823da14bce0e9
89 Nff755391e4d64178a38102a6a6f27196 schema:issueNumber 5
90 rdf:type schema:PublicationIssue
91 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
92 schema:name Physical Sciences
93 rdf:type schema:DefinedTerm
94 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
95 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
96 rdf:type schema:DefinedTerm
97 sg:journal.1295077 schema:issn 1434-6060
98 1434-6079
99 schema:name The European Physical Journal D
100 rdf:type schema:Periodical
101 sg:person.01035135244.58 schema:affiliation https://www.grid.ac/institutes/grid.494576.d
102 schema:familyName Conde
103 schema:givenName Alvaro Peralta
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01035135244.58
105 rdf:type schema:Person
106 sg:person.013014265351.24 schema:affiliation https://www.grid.ac/institutes/grid.11762.33
107 schema:familyName Chacón
108 schema:givenName Alexis
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013014265351.24
110 rdf:type schema:Person
111 sg:person.01306704372.21 schema:affiliation https://www.grid.ac/institutes/grid.450272.6
112 schema:familyName Ciappina
113 schema:givenName Marcelo F.
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01306704372.21
115 rdf:type schema:Person
116 sg:pub.10.1007/bf01331132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018786378
117 https://doi.org/10.1007/bf01331132
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/s10910-005-9042-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013089006
120 https://doi.org/10.1007/s10910-005-9042-0
121 rdf:type schema:CreativeWork
122 sg:pub.10.1038/nature01143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038126500
123 https://doi.org/10.1038/nature01143
124 rdf:type schema:CreativeWork
125 sg:pub.10.1038/nature05648 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029584101
126 https://doi.org/10.1038/nature05648
127 rdf:type schema:CreativeWork
128 sg:pub.10.1038/nature06229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016009275
129 https://doi.org/10.1038/nature06229
130 rdf:type schema:CreativeWork
131 sg:pub.10.1038/ncomms5003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041603226
132 https://doi.org/10.1038/ncomms5003
133 rdf:type schema:CreativeWork
134 sg:pub.10.1038/nphys1946 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037245776
135 https://doi.org/10.1038/nphys1946
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/0009-2614(86)80262-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003932040
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/0021-9991(82)90091-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001274121
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.elspec.2012.12.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017685952
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.physleta.2012.03.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017183562
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/s0030-4018(01)01495-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1001201653
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1021/jp803548c schema:sameAs https://app.dimensions.ai/details/publication/pub.1056108509
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1063/1.881806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058127292
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1080/09500340500167669 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017070272
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1080/09500349808231909 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017031244
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1088/0953-4075/42/13/134004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011285683
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1103/physreva.38.6000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060478481
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1103/physreva.49.2117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060488303
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1103/physreva.50.r3585 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060489841
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1103/physreva.52.504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060491001
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1103/physreva.52.525 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060491004
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1103/physreva.53.1187 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060491151
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1103/physreva.53.r1962 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060491663
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1103/physreva.65.023404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023762002
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1103/physreva.68.043405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060499499
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1103/physreva.72.053808 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060501722
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1103/physreva.72.063412 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022373339
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1103/physreva.79.061405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060505848
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1103/physreva.81.033412 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060507262
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1103/physreva.82.063817 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060508264
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1103/physreva.88.033423 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060511474
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1103/physrevlett.103.257402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060756387
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1103/physrevlett.110.053001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020061395
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1103/physrevlett.111.243005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049595550
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1103/physrevlett.71.1994 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060807615
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1103/physrevlett.94.083003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060829952
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1103/physrevlett.94.113906 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060830049
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1103/physrevlett.97.243004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060833243
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1103/physrevx.4.021028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034618955
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1103/revmodphys.70.1003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839414
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1364/oe.19.019430 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065197857
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1364/ol.35.003664 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065229347
208 rdf:type schema:CreativeWork
209 https://www.grid.ac/institutes/grid.11762.33 schema:alternateName University of Salamanca
210 schema:name Grupo de Investigación en Óptica Extrema, Universidad de Salamanca, 37008, Salamanca, Spain
211 ICFO-Institut de Ciéncies Fotóniques, Mediterranean Technology Park, 08860, Castelldefels (Barcelona), Spain
212 rdf:type schema:Organization
213 https://www.grid.ac/institutes/grid.450272.6 schema:alternateName Max Planck Institute of Quantum Optics
214 schema:name Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Strasse 1, 85748, Garching, Germany
215 rdf:type schema:Organization
216 https://www.grid.ac/institutes/grid.494576.d schema:alternateName Spanish Center for Pulsed Lasers
217 schema:name Centro de Láseres Pulsados (CLPU), Parque Científico USAL, 37185, Villamayor, Salamanca, Spain
218 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...