Finding Limit Cycles in self-excited oscillators with infinite-series damping functions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-03-24

AUTHORS

Debapriya Das, Dhruba Banerjee, Jayanta K. Bhattacharjee

ABSTRACT

In this paper we present a simple method for finding the location of limit cycles of self excited oscillators whose damping functions can be represented by some infinite convergent series. We have used standard results of first-order perturbation theory to arrive at amplitude equations. The approach has been kept pedagogic by first working out the cases of finite polynomials using elementary algebra. Then the method has been extended to various infinite polynomials, where the fixed points of the corresponding amplitude equations cannot be found out. Hopf bifurcations for systems with nonlinear powers in velocities have also been discussed.Graphical abstract More... »

PAGES

85

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1140/epjd/e2015-50457-5

DOI

http://dx.doi.org/10.1140/epjd/e2015-50457-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1045157141


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Physics, Jadavpur University, Kolkata, 700032, West Bengal, India", 
          "id": "http://www.grid.ac/institutes/grid.216499.1", 
          "name": [
            "Department of Physics, Jadavpur University, Kolkata, 700032, West Bengal, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Das", 
        "givenName": "Debapriya", 
        "id": "sg:person.012726576305.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012726576305.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, Jadavpur University, Kolkata, 700032, West Bengal, India", 
          "id": "http://www.grid.ac/institutes/grid.216499.1", 
          "name": [
            "Department of Physics, Jadavpur University, Kolkata, 700032, West Bengal, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Banerjee", 
        "givenName": "Dhruba", 
        "id": "sg:person.010104130547.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010104130547.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harish Chandra Research Institute, 211019, Allahabad, India", 
          "id": "http://www.grid.ac/institutes/grid.450311.2", 
          "name": [
            "Harish Chandra Research Institute, 211019, Allahabad, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bhattacharjee", 
        "givenName": "Jayanta K.", 
        "id": "sg:person.015365735162.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015365735162.55"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-1-4612-1140-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044255212", 
          "https://doi.org/10.1007/978-1-4612-1140-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-08539-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016119828", 
          "https://doi.org/10.1007/978-3-662-08539-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjd/e2011-20060-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000471191", 
          "https://doi.org/10.1140/epjd/e2011-20060-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjd/e2010-00281-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044192628", 
          "https://doi.org/10.1140/epjd/e2010-00281-6"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-03-24", 
    "datePublishedReg": "2015-03-24", 
    "description": "In this paper we present a simple method for finding the location of limit cycles of self excited oscillators whose damping functions can be represented by some infinite convergent series. We have used standard results of first-order perturbation theory to arrive at amplitude equations. The approach has been kept pedagogic by first working out the cases of finite polynomials using elementary algebra. Then the method has been extended to various infinite polynomials, where the fixed points of the corresponding amplitude equations cannot be found out. Hopf bifurcations for systems with nonlinear powers in velocities have also been discussed.Graphical abstract", 
    "genre": "article", 
    "id": "sg:pub.10.1140/epjd/e2015-50457-5", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1398043", 
        "issn": [
          "1155-4312", 
          "1286-4870"
        ], 
        "name": "The European Physical Journal D", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "69"
      }
    ], 
    "keywords": [
      "limit cycles", 
      "amplitude equations", 
      "infinite convergent series", 
      "convergent series", 
      "elementary algebra", 
      "corresponding amplitude equation", 
      "finite polynomials", 
      "infinite polynomials", 
      "Hopf bifurcation", 
      "self-excited oscillators", 
      "excited oscillator", 
      "standard results", 
      "perturbation theory", 
      "polynomials", 
      "equations", 
      "first-order perturbation theory", 
      "nonlinear power", 
      "damping functions", 
      "algebra", 
      "oscillator", 
      "bifurcation", 
      "theory", 
      "function", 
      "simple method", 
      "approach", 
      "system", 
      "point", 
      "power", 
      "cases", 
      "results", 
      "velocity", 
      "series", 
      "location", 
      "cycle", 
      "method", 
      "paper", 
      "self excited oscillators", 
      "Graphical abstract Finding Limit Cycles", 
      "abstract Finding Limit Cycles", 
      "Finding Limit Cycles", 
      "infinite-series damping functions"
    ], 
    "name": "Finding Limit Cycles in self-excited oscillators with infinite-series damping functions", 
    "pagination": "85", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1045157141"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1140/epjd/e2015-50457-5"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1140/epjd/e2015-50457-5", 
      "https://app.dimensions.ai/details/publication/pub.1045157141"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_668.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1140/epjd/e2015-50457-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epjd/e2015-50457-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epjd/e2015-50457-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epjd/e2015-50457-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epjd/e2015-50457-5'


 

This table displays all metadata directly associated to this object as RDF triples.

128 TRIPLES      22 PREDICATES      69 URIs      58 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1140/epjd/e2015-50457-5 schema:about anzsrc-for:02
2 schema:author Nf6dec650f6ac41e3adfe52a6e00fb669
3 schema:citation sg:pub.10.1007/978-1-4612-1140-2
4 sg:pub.10.1007/978-3-662-08539-4
5 sg:pub.10.1140/epjd/e2010-00281-6
6 sg:pub.10.1140/epjd/e2011-20060-1
7 schema:datePublished 2015-03-24
8 schema:datePublishedReg 2015-03-24
9 schema:description In this paper we present a simple method for finding the location of limit cycles of self excited oscillators whose damping functions can be represented by some infinite convergent series. We have used standard results of first-order perturbation theory to arrive at amplitude equations. The approach has been kept pedagogic by first working out the cases of finite polynomials using elementary algebra. Then the method has been extended to various infinite polynomials, where the fixed points of the corresponding amplitude equations cannot be found out. Hopf bifurcations for systems with nonlinear powers in velocities have also been discussed.Graphical abstract
10 schema:genre article
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf N08506ac90a324cb2b278baf89a267a59
14 N0dca13e8982947b6a71e67e63dc7ed22
15 sg:journal.1398043
16 schema:keywords Finding Limit Cycles
17 Graphical abstract Finding Limit Cycles
18 Hopf bifurcation
19 abstract Finding Limit Cycles
20 algebra
21 amplitude equations
22 approach
23 bifurcation
24 cases
25 convergent series
26 corresponding amplitude equation
27 cycle
28 damping functions
29 elementary algebra
30 equations
31 excited oscillator
32 finite polynomials
33 first-order perturbation theory
34 function
35 infinite convergent series
36 infinite polynomials
37 infinite-series damping functions
38 limit cycles
39 location
40 method
41 nonlinear power
42 oscillator
43 paper
44 perturbation theory
45 point
46 polynomials
47 power
48 results
49 self excited oscillators
50 self-excited oscillators
51 series
52 simple method
53 standard results
54 system
55 theory
56 velocity
57 schema:name Finding Limit Cycles in self-excited oscillators with infinite-series damping functions
58 schema:pagination 85
59 schema:productId Nc3f2885d25244a89a8e8b1c79e0f8b6c
60 Nd05b1d8c442749329e6933986e5db4e9
61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045157141
62 https://doi.org/10.1140/epjd/e2015-50457-5
63 schema:sdDatePublished 2021-11-01T18:25
64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
65 schema:sdPublisher N2eebf5f5128a42ada9b299db3a62888d
66 schema:url https://doi.org/10.1140/epjd/e2015-50457-5
67 sgo:license sg:explorer/license/
68 sgo:sdDataset articles
69 rdf:type schema:ScholarlyArticle
70 N08506ac90a324cb2b278baf89a267a59 schema:issueNumber 3
71 rdf:type schema:PublicationIssue
72 N0dca13e8982947b6a71e67e63dc7ed22 schema:volumeNumber 69
73 rdf:type schema:PublicationVolume
74 N2eebf5f5128a42ada9b299db3a62888d schema:name Springer Nature - SN SciGraph project
75 rdf:type schema:Organization
76 Nc3f2885d25244a89a8e8b1c79e0f8b6c schema:name dimensions_id
77 schema:value pub.1045157141
78 rdf:type schema:PropertyValue
79 Nd05b1d8c442749329e6933986e5db4e9 schema:name doi
80 schema:value 10.1140/epjd/e2015-50457-5
81 rdf:type schema:PropertyValue
82 Nd53c5f14fbba40d99449e3ea735e9a6f rdf:first sg:person.010104130547.86
83 rdf:rest Ndce2816197534e52b61a440d11b6d324
84 Ndce2816197534e52b61a440d11b6d324 rdf:first sg:person.015365735162.55
85 rdf:rest rdf:nil
86 Nf6dec650f6ac41e3adfe52a6e00fb669 rdf:first sg:person.012726576305.79
87 rdf:rest Nd53c5f14fbba40d99449e3ea735e9a6f
88 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
89 schema:name Physical Sciences
90 rdf:type schema:DefinedTerm
91 sg:journal.1398043 schema:issn 1155-4312
92 1286-4870
93 schema:name The European Physical Journal D
94 schema:publisher Springer Nature
95 rdf:type schema:Periodical
96 sg:person.010104130547.86 schema:affiliation grid-institutes:grid.216499.1
97 schema:familyName Banerjee
98 schema:givenName Dhruba
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010104130547.86
100 rdf:type schema:Person
101 sg:person.012726576305.79 schema:affiliation grid-institutes:grid.216499.1
102 schema:familyName Das
103 schema:givenName Debapriya
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012726576305.79
105 rdf:type schema:Person
106 sg:person.015365735162.55 schema:affiliation grid-institutes:grid.450311.2
107 schema:familyName Bhattacharjee
108 schema:givenName Jayanta K.
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015365735162.55
110 rdf:type schema:Person
111 sg:pub.10.1007/978-1-4612-1140-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044255212
112 https://doi.org/10.1007/978-1-4612-1140-2
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/978-3-662-08539-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016119828
115 https://doi.org/10.1007/978-3-662-08539-4
116 rdf:type schema:CreativeWork
117 sg:pub.10.1140/epjd/e2010-00281-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044192628
118 https://doi.org/10.1140/epjd/e2010-00281-6
119 rdf:type schema:CreativeWork
120 sg:pub.10.1140/epjd/e2011-20060-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000471191
121 https://doi.org/10.1140/epjd/e2011-20060-1
122 rdf:type schema:CreativeWork
123 grid-institutes:grid.216499.1 schema:alternateName Department of Physics, Jadavpur University, Kolkata, 700032, West Bengal, India
124 schema:name Department of Physics, Jadavpur University, Kolkata, 700032, West Bengal, India
125 rdf:type schema:Organization
126 grid-institutes:grid.450311.2 schema:alternateName Harish Chandra Research Institute, 211019, Allahabad, India
127 schema:name Harish Chandra Research Institute, 211019, Allahabad, India
128 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...