Measuring the degree of unitarity for any quantum process View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-09

AUTHORS

Jing-Xin Cui, Zi-Dan Wang

ABSTRACT

We establish a general theory for measuring the degree of unitarity (DU) of any quantum process, in which the DU is defined to be the fidelity between the process and its closest unitary one. The DU, as an intrinsic property of a given quantum process, is able to quantify the distance between the process and the group of unitary ones, being closely related to the noise of this quantum process. We not only derive analytical results of DU for qubit unital channels, but also find the lower and upper bounds in general cases. It is shown that the lower bound is tight for most of quantum processes. Moreover, the relationship between the DU of any quantum process and its non-markovian behavior is also addressed. More... »

PAGES

248

References to SciGraph publications

  • 1982-06. Simulating physics with computers in INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS
  • 2011-02. Experimentally feasible measures of distance between quantum operations in QUANTUM INFORMATION PROCESSING
  • Journal

    TITLE

    The European Physical Journal D

    ISSUE

    9

    VOLUME

    68

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1140/epjd/e2014-50354-5

    DOI

    http://dx.doi.org/10.1140/epjd/e2014-50354-5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1039435535


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Quantum Physics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Hong Kong", 
              "id": "https://www.grid.ac/institutes/grid.194645.b", 
              "name": [
                "Department of Physics and Center of Theoretical and Computational Physics, The University of Hong Kong, Pokfulam Road, Hong Kong, P.R. China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cui", 
            "givenName": "Jing-Xin", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Hong Kong", 
              "id": "https://www.grid.ac/institutes/grid.194645.b", 
              "name": [
                "Department of Physics and Center of Theoretical and Computational Physics, The University of Hong Kong, Pokfulam Road, Hong Kong, P.R. China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Zi-Dan", 
            "id": "sg:person.011374710011.80", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011374710011.80"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1103/physreva.86.052302", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000799516"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.86.052302", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000799516"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.105.050403", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000945389"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.105.050403", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000945389"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.79.325", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002540107"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.79.325", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002540107"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physleta.2007.02.069", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004950063"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1367-2630/12/1/015001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013554176"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1367-2630/12/1/015001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013554176"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.103.210401", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018571364"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.103.210401", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018571364"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.71.062310", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021696821"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.71.062310", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021696821"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.71.062310", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021696821"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cpc.2011.08.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021928655"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11128-010-0166-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025904973", 
              "https://doi.org/10.1007/s11128-010-0166-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.91.067902", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028955058"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.91.067902", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028955058"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02650179", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038336282", 
              "https://doi.org/10.1007/bf02650179"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0024-3795(93)90274-r", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043542267"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0375-9601(02)01272-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046632812"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/09500340308234541", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051614713"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0143-0807/33/4/805", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053448851"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.82.034302", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060507953"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.82.034302", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060507953"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.102.150501", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060755182"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.102.150501", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060755182"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s0129183111016683", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062905335"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/cbo9780511535048", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098707430"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2014-09", 
        "datePublishedReg": "2014-09-01", 
        "description": "We establish a general theory for measuring the degree of unitarity (DU) of any quantum process, in which the DU is defined to be the fidelity between the process and its closest unitary one. The DU, as an intrinsic property of a given quantum process, is able to quantify the distance between the process and the group of unitary ones, being closely related to the noise of this quantum process. We not only derive analytical results of DU for qubit unital channels, but also find the lower and upper bounds in general cases. It is shown that the lower bound is tight for most of quantum processes. Moreover, the relationship between the DU of any quantum process and its non-markovian behavior is also addressed.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1140/epjd/e2014-50354-5", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1295077", 
            "issn": [
              "1434-6060", 
              "1434-6079"
            ], 
            "name": "The European Physical Journal D", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "9", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "68"
          }
        ], 
        "name": "Measuring the degree of unitarity for any quantum process", 
        "pagination": "248", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "bbda349555cf3639b5275fdea1511ce878c6c7441aa3595ff6de0866fb3e2bd9"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1140/epjd/e2014-50354-5"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1039435535"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1140/epjd/e2014-50354-5", 
          "https://app.dimensions.ai/details/publication/pub.1039435535"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T14:08", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000507.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1140%2Fepjd%2Fe2014-50354-5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epjd/e2014-50354-5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epjd/e2014-50354-5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epjd/e2014-50354-5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epjd/e2014-50354-5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    126 TRIPLES      21 PREDICATES      46 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1140/epjd/e2014-50354-5 schema:about anzsrc-for:02
    2 anzsrc-for:0206
    3 schema:author N7ca75b82c82b4b08b8b605e70c29d092
    4 schema:citation sg:pub.10.1007/bf02650179
    5 sg:pub.10.1007/s11128-010-0166-1
    6 https://doi.org/10.1016/0024-3795(93)90274-r
    7 https://doi.org/10.1016/j.cpc.2011.08.002
    8 https://doi.org/10.1016/j.physleta.2007.02.069
    9 https://doi.org/10.1016/s0375-9601(02)01272-0
    10 https://doi.org/10.1017/cbo9780511535048
    11 https://doi.org/10.1080/09500340308234541
    12 https://doi.org/10.1088/0143-0807/33/4/805
    13 https://doi.org/10.1088/1367-2630/12/1/015001
    14 https://doi.org/10.1103/physreva.71.062310
    15 https://doi.org/10.1103/physreva.82.034302
    16 https://doi.org/10.1103/physreva.86.052302
    17 https://doi.org/10.1103/physrevlett.102.150501
    18 https://doi.org/10.1103/physrevlett.103.210401
    19 https://doi.org/10.1103/physrevlett.105.050403
    20 https://doi.org/10.1103/physrevlett.79.325
    21 https://doi.org/10.1103/physrevlett.91.067902
    22 https://doi.org/10.1142/s0129183111016683
    23 schema:datePublished 2014-09
    24 schema:datePublishedReg 2014-09-01
    25 schema:description We establish a general theory for measuring the degree of unitarity (DU) of any quantum process, in which the DU is defined to be the fidelity between the process and its closest unitary one. The DU, as an intrinsic property of a given quantum process, is able to quantify the distance between the process and the group of unitary ones, being closely related to the noise of this quantum process. We not only derive analytical results of DU for qubit unital channels, but also find the lower and upper bounds in general cases. It is shown that the lower bound is tight for most of quantum processes. Moreover, the relationship between the DU of any quantum process and its non-markovian behavior is also addressed.
    26 schema:genre research_article
    27 schema:inLanguage en
    28 schema:isAccessibleForFree true
    29 schema:isPartOf N64a39f8a46e14b46bf59c49799918cca
    30 Nf64c3c49ed80474e85d79fa91261eac9
    31 sg:journal.1295077
    32 schema:name Measuring the degree of unitarity for any quantum process
    33 schema:pagination 248
    34 schema:productId N05306160ba0043e78527d668cfebb30e
    35 Ne8b37af08bdd45fc9ef8fe3a78e09c48
    36 Nf8e29eef39ea46d88fc6186ae21871fa
    37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039435535
    38 https://doi.org/10.1140/epjd/e2014-50354-5
    39 schema:sdDatePublished 2019-04-10T14:08
    40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    41 schema:sdPublisher N4164dc53dcc34db9a17d9ad7988a2f9c
    42 schema:url http://link.springer.com/10.1140%2Fepjd%2Fe2014-50354-5
    43 sgo:license sg:explorer/license/
    44 sgo:sdDataset articles
    45 rdf:type schema:ScholarlyArticle
    46 N0183f6a1a4de45f2b78ada6a35699b77 rdf:first sg:person.011374710011.80
    47 rdf:rest rdf:nil
    48 N05306160ba0043e78527d668cfebb30e schema:name dimensions_id
    49 schema:value pub.1039435535
    50 rdf:type schema:PropertyValue
    51 N4164dc53dcc34db9a17d9ad7988a2f9c schema:name Springer Nature - SN SciGraph project
    52 rdf:type schema:Organization
    53 N64a39f8a46e14b46bf59c49799918cca schema:volumeNumber 68
    54 rdf:type schema:PublicationVolume
    55 N7ca75b82c82b4b08b8b605e70c29d092 rdf:first N9341b83884a94d1ba62ff22b67e39d84
    56 rdf:rest N0183f6a1a4de45f2b78ada6a35699b77
    57 N9341b83884a94d1ba62ff22b67e39d84 schema:affiliation https://www.grid.ac/institutes/grid.194645.b
    58 schema:familyName Cui
    59 schema:givenName Jing-Xin
    60 rdf:type schema:Person
    61 Ne8b37af08bdd45fc9ef8fe3a78e09c48 schema:name doi
    62 schema:value 10.1140/epjd/e2014-50354-5
    63 rdf:type schema:PropertyValue
    64 Nf64c3c49ed80474e85d79fa91261eac9 schema:issueNumber 9
    65 rdf:type schema:PublicationIssue
    66 Nf8e29eef39ea46d88fc6186ae21871fa schema:name readcube_id
    67 schema:value bbda349555cf3639b5275fdea1511ce878c6c7441aa3595ff6de0866fb3e2bd9
    68 rdf:type schema:PropertyValue
    69 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    70 schema:name Physical Sciences
    71 rdf:type schema:DefinedTerm
    72 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
    73 schema:name Quantum Physics
    74 rdf:type schema:DefinedTerm
    75 sg:journal.1295077 schema:issn 1434-6060
    76 1434-6079
    77 schema:name The European Physical Journal D
    78 rdf:type schema:Periodical
    79 sg:person.011374710011.80 schema:affiliation https://www.grid.ac/institutes/grid.194645.b
    80 schema:familyName Wang
    81 schema:givenName Zi-Dan
    82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011374710011.80
    83 rdf:type schema:Person
    84 sg:pub.10.1007/bf02650179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038336282
    85 https://doi.org/10.1007/bf02650179
    86 rdf:type schema:CreativeWork
    87 sg:pub.10.1007/s11128-010-0166-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025904973
    88 https://doi.org/10.1007/s11128-010-0166-1
    89 rdf:type schema:CreativeWork
    90 https://doi.org/10.1016/0024-3795(93)90274-r schema:sameAs https://app.dimensions.ai/details/publication/pub.1043542267
    91 rdf:type schema:CreativeWork
    92 https://doi.org/10.1016/j.cpc.2011.08.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021928655
    93 rdf:type schema:CreativeWork
    94 https://doi.org/10.1016/j.physleta.2007.02.069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004950063
    95 rdf:type schema:CreativeWork
    96 https://doi.org/10.1016/s0375-9601(02)01272-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046632812
    97 rdf:type schema:CreativeWork
    98 https://doi.org/10.1017/cbo9780511535048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098707430
    99 rdf:type schema:CreativeWork
    100 https://doi.org/10.1080/09500340308234541 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051614713
    101 rdf:type schema:CreativeWork
    102 https://doi.org/10.1088/0143-0807/33/4/805 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053448851
    103 rdf:type schema:CreativeWork
    104 https://doi.org/10.1088/1367-2630/12/1/015001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013554176
    105 rdf:type schema:CreativeWork
    106 https://doi.org/10.1103/physreva.71.062310 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021696821
    107 rdf:type schema:CreativeWork
    108 https://doi.org/10.1103/physreva.82.034302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060507953
    109 rdf:type schema:CreativeWork
    110 https://doi.org/10.1103/physreva.86.052302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000799516
    111 rdf:type schema:CreativeWork
    112 https://doi.org/10.1103/physrevlett.102.150501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060755182
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.1103/physrevlett.103.210401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018571364
    115 rdf:type schema:CreativeWork
    116 https://doi.org/10.1103/physrevlett.105.050403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000945389
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1103/physrevlett.79.325 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002540107
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1103/physrevlett.91.067902 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028955058
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1142/s0129183111016683 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062905335
    123 rdf:type schema:CreativeWork
    124 https://www.grid.ac/institutes/grid.194645.b schema:alternateName University of Hong Kong
    125 schema:name Department of Physics and Center of Theoretical and Computational Physics, The University of Hong Kong, Pokfulam Road, Hong Kong, P.R. China
    126 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...