Simulation studies of the behavior of positrons in a microtrap with long aspect ratio View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-11

AUTHORS

Alireza Narimannezhad, Christopher J. Baker, Marc H. Weber, Joshah Jennings, Kelvin G. Lynn

ABSTRACT

The storage capacity of positrons in micro-Penning-Malmberg traps with large length to radius aspect ratios and radii of tens of microns was explored. Simulation studies were conducted with the WARP code and Charged Particle Optics program. A new design of the Penning-Malmberg trap consisting of an array of microtraps with substantially lower end electrode potential than conventional traps was considered. Simulations demonstrated each microtrap with 50 μm radius immersed in a 7T uniform magnetic field could store positrons indefinitely with a density of 1.6 × 1011cm-3 while the confinement voltage was only 10V. For microtraps with radii between 100 μm and 3 μm, the particle density scaled as r-2. Charge clouds developed the expected radial density distribution (that of a soft edge) and rigid rotation evolved to some extent. Plasma confinement time was independent of trap length. More... »

PAGES

351

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1140/epjd/e2014-40700-0

DOI

http://dx.doi.org/10.1140/epjd/e2014-40700-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1016126137


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Washington State University", 
          "id": "https://www.grid.ac/institutes/grid.30064.31", 
          "name": [
            "Center for Materials Research, Washington State University, 99164-2711, Pullman, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Narimannezhad", 
        "givenName": "Alireza", 
        "id": "sg:person.011425470071.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011425470071.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Washington State University", 
          "id": "https://www.grid.ac/institutes/grid.30064.31", 
          "name": [
            "Center for Materials Research, Washington State University, 99164-2711, Pullman, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Baker", 
        "givenName": "Christopher J.", 
        "id": "sg:person.014762235655.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014762235655.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Washington State University", 
          "id": "https://www.grid.ac/institutes/grid.30064.31", 
          "name": [
            "Center for Materials Research, Washington State University, 99164-2711, Pullman, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Weber", 
        "givenName": "Marc H.", 
        "id": "sg:person.016042706005.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016042706005.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Washington State University", 
          "id": "https://www.grid.ac/institutes/grid.30064.31", 
          "name": [
            "Center for Materials Research, Washington State University, 99164-2711, Pullman, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jennings", 
        "givenName": "Joshah", 
        "id": "sg:person.013020431071.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013020431071.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Washington State University", 
          "id": "https://www.grid.ac/institutes/grid.30064.31", 
          "name": [
            "Center for Materials Research, Washington State University, 99164-2711, Pullman, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lynn", 
        "givenName": "Kelvin G.", 
        "id": "sg:person.015475162335.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015475162335.87"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jcp.2007.02.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007121776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0969-806x(03)00194-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019198934"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0969-806x(03)00194-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019198934"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjd/e2012-20631-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024658642", 
          "https://doi.org/10.1140/epjd/e2012-20631-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0031-8914(36)80313-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025788162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys2025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038545965", 
          "https://doi.org/10.1038/nphys2025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01096", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038727816", 
          "https://doi.org/10.1038/nature01096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01096", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038727816", 
          "https://doi.org/10.1038/nature01096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040976819", 
          "https://doi.org/10.1038/nature06094"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physrep.2004.08.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043961193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0169-4332(99)00162-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049991443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nima.2007.02.035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053467881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/mnl.2014.0239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056885591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1882292", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057830182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2390690", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057854022"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.347601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057958261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4789880", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058068728"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4862554", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058088947"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.862577", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058115773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.862904", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058116098"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.865580", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058118770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.872299", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058124409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.872837", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058124940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.874128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058126208"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.67.260", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060452501"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.67.260", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060452501"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.58.1193", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060589070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.58.1193", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060589070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.44.654", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060785076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.44.654", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060785076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.50.167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060788535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.50.167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060788535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.59.2975", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060796113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.59.2975", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060796113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.60.1290", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060796694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.60.1290", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060796694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.1883", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060821755"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.1883", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060821755"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.2510", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060821859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.2510", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060821859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.60.701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839161"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.60.701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839161"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.71.87", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.71.87", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jpsj.36.603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063100809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1147/rd.112.0215", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063179709"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-11", 
    "datePublishedReg": "2014-11-01", 
    "description": "The storage capacity of positrons in micro-Penning-Malmberg traps with large length to radius aspect ratios and radii of tens of microns was explored. Simulation studies were conducted with the WARP code and Charged Particle Optics program. A new design of the Penning-Malmberg trap consisting of an array of microtraps with substantially lower end electrode potential than conventional traps was considered. Simulations demonstrated each microtrap with 50 \u03bcm radius immersed in a 7T uniform magnetic field could store positrons indefinitely with a density of 1.6 \u00d7 1011cm-3 while the confinement voltage was only 10V. For microtraps with radii between 100 \u03bcm and 3 \u03bcm, the particle density scaled as r-2. Charge clouds developed the expected radial density distribution (that of a soft edge) and rigid rotation evolved to some extent. Plasma confinement time was independent of trap length.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1140/epjd/e2014-40700-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1295077", 
        "issn": [
          "1434-6060", 
          "1434-6079"
        ], 
        "name": "The European Physical Journal D", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "68"
      }
    ], 
    "name": "Simulation studies of the behavior of positrons in a microtrap with long aspect ratio", 
    "pagination": "351", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4cd639a33fcfb40ddfdf99eb20a702b9608ad508769da5b0c89d7a1882d41cf9"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1140/epjd/e2014-40700-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1016126137"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1140/epjd/e2014-40700-0", 
      "https://app.dimensions.ai/details/publication/pub.1016126137"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000504.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1140%2Fepjd%2Fe2014-40700-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epjd/e2014-40700-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epjd/e2014-40700-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epjd/e2014-40700-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epjd/e2014-40700-0'


 

This table displays all metadata directly associated to this object as RDF triples.

195 TRIPLES      21 PREDICATES      61 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1140/epjd/e2014-40700-0 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author N2df42151b9354c5b84c2bce6a816995c
4 schema:citation sg:pub.10.1038/nature01096
5 sg:pub.10.1038/nature06094
6 sg:pub.10.1038/nphys2025
7 sg:pub.10.1140/epjd/e2012-20631-6
8 https://doi.org/10.1016/j.jcp.2007.02.029
9 https://doi.org/10.1016/j.nima.2007.02.035
10 https://doi.org/10.1016/j.physrep.2004.08.002
11 https://doi.org/10.1016/s0031-8914(36)80313-9
12 https://doi.org/10.1016/s0169-4332(99)00162-2
13 https://doi.org/10.1016/s0969-806x(03)00194-4
14 https://doi.org/10.1049/mnl.2014.0239
15 https://doi.org/10.1063/1.1882292
16 https://doi.org/10.1063/1.2390690
17 https://doi.org/10.1063/1.347601
18 https://doi.org/10.1063/1.4789880
19 https://doi.org/10.1063/1.4862554
20 https://doi.org/10.1063/1.862577
21 https://doi.org/10.1063/1.862904
22 https://doi.org/10.1063/1.865580
23 https://doi.org/10.1063/1.872299
24 https://doi.org/10.1063/1.872837
25 https://doi.org/10.1063/1.874128
26 https://doi.org/10.1103/physrev.67.260
27 https://doi.org/10.1103/physrevb.58.1193
28 https://doi.org/10.1103/physrevlett.44.654
29 https://doi.org/10.1103/physrevlett.50.167
30 https://doi.org/10.1103/physrevlett.59.2975
31 https://doi.org/10.1103/physrevlett.60.1290
32 https://doi.org/10.1103/physrevlett.85.1883
33 https://doi.org/10.1103/physrevlett.85.2510
34 https://doi.org/10.1103/revmodphys.60.701
35 https://doi.org/10.1103/revmodphys.71.87
36 https://doi.org/10.1143/jpsj.36.603
37 https://doi.org/10.1147/rd.112.0215
38 schema:datePublished 2014-11
39 schema:datePublishedReg 2014-11-01
40 schema:description The storage capacity of positrons in micro-Penning-Malmberg traps with large length to radius aspect ratios and radii of tens of microns was explored. Simulation studies were conducted with the WARP code and Charged Particle Optics program. A new design of the Penning-Malmberg trap consisting of an array of microtraps with substantially lower end electrode potential than conventional traps was considered. Simulations demonstrated each microtrap with 50 μm radius immersed in a 7T uniform magnetic field could store positrons indefinitely with a density of 1.6 × 1011cm-3 while the confinement voltage was only 10V. For microtraps with radii between 100 μm and 3 μm, the particle density scaled as r-2. Charge clouds developed the expected radial density distribution (that of a soft edge) and rigid rotation evolved to some extent. Plasma confinement time was independent of trap length.
41 schema:genre research_article
42 schema:inLanguage en
43 schema:isAccessibleForFree false
44 schema:isPartOf N3b8f66c3742444dcb29bfb62f66f5452
45 N59c6c9df5008404ba552715881528942
46 sg:journal.1295077
47 schema:name Simulation studies of the behavior of positrons in a microtrap with long aspect ratio
48 schema:pagination 351
49 schema:productId N6a016d709a1642a29aa11a4162cf8d62
50 Nd6b1bae884084c8eafae393ee4aa4d0a
51 Ne7cb2916baa84ef082af33f2437e14bf
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016126137
53 https://doi.org/10.1140/epjd/e2014-40700-0
54 schema:sdDatePublished 2019-04-10T14:07
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher N7bc7f8c3c6c5475da013d323b5d23caf
57 schema:url http://link.springer.com/10.1140%2Fepjd%2Fe2014-40700-0
58 sgo:license sg:explorer/license/
59 sgo:sdDataset articles
60 rdf:type schema:ScholarlyArticle
61 N2df42151b9354c5b84c2bce6a816995c rdf:first sg:person.011425470071.32
62 rdf:rest N793c6184e79443b3ac221cb2a03d27f0
63 N3b8f66c3742444dcb29bfb62f66f5452 schema:volumeNumber 68
64 rdf:type schema:PublicationVolume
65 N59c6c9df5008404ba552715881528942 schema:issueNumber 11
66 rdf:type schema:PublicationIssue
67 N6a016d709a1642a29aa11a4162cf8d62 schema:name dimensions_id
68 schema:value pub.1016126137
69 rdf:type schema:PropertyValue
70 N793c6184e79443b3ac221cb2a03d27f0 rdf:first sg:person.014762235655.17
71 rdf:rest Nb8a3e044f50f478cbfcf6b232c7f310d
72 N7bc7f8c3c6c5475da013d323b5d23caf schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 Nb8a3e044f50f478cbfcf6b232c7f310d rdf:first sg:person.016042706005.06
75 rdf:rest Nd7abe5ab832345beaa9683c786f650f8
76 Nc7a3447be54640409ed2f7ae4abaf30c rdf:first sg:person.015475162335.87
77 rdf:rest rdf:nil
78 Nd6b1bae884084c8eafae393ee4aa4d0a schema:name readcube_id
79 schema:value 4cd639a33fcfb40ddfdf99eb20a702b9608ad508769da5b0c89d7a1882d41cf9
80 rdf:type schema:PropertyValue
81 Nd7abe5ab832345beaa9683c786f650f8 rdf:first sg:person.013020431071.18
82 rdf:rest Nc7a3447be54640409ed2f7ae4abaf30c
83 Ne7cb2916baa84ef082af33f2437e14bf schema:name doi
84 schema:value 10.1140/epjd/e2014-40700-0
85 rdf:type schema:PropertyValue
86 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
87 schema:name Physical Sciences
88 rdf:type schema:DefinedTerm
89 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
90 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
91 rdf:type schema:DefinedTerm
92 sg:journal.1295077 schema:issn 1434-6060
93 1434-6079
94 schema:name The European Physical Journal D
95 rdf:type schema:Periodical
96 sg:person.011425470071.32 schema:affiliation https://www.grid.ac/institutes/grid.30064.31
97 schema:familyName Narimannezhad
98 schema:givenName Alireza
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011425470071.32
100 rdf:type schema:Person
101 sg:person.013020431071.18 schema:affiliation https://www.grid.ac/institutes/grid.30064.31
102 schema:familyName Jennings
103 schema:givenName Joshah
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013020431071.18
105 rdf:type schema:Person
106 sg:person.014762235655.17 schema:affiliation https://www.grid.ac/institutes/grid.30064.31
107 schema:familyName Baker
108 schema:givenName Christopher J.
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014762235655.17
110 rdf:type schema:Person
111 sg:person.015475162335.87 schema:affiliation https://www.grid.ac/institutes/grid.30064.31
112 schema:familyName Lynn
113 schema:givenName Kelvin G.
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015475162335.87
115 rdf:type schema:Person
116 sg:person.016042706005.06 schema:affiliation https://www.grid.ac/institutes/grid.30064.31
117 schema:familyName Weber
118 schema:givenName Marc H.
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016042706005.06
120 rdf:type schema:Person
121 sg:pub.10.1038/nature01096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038727816
122 https://doi.org/10.1038/nature01096
123 rdf:type schema:CreativeWork
124 sg:pub.10.1038/nature06094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040976819
125 https://doi.org/10.1038/nature06094
126 rdf:type schema:CreativeWork
127 sg:pub.10.1038/nphys2025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038545965
128 https://doi.org/10.1038/nphys2025
129 rdf:type schema:CreativeWork
130 sg:pub.10.1140/epjd/e2012-20631-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024658642
131 https://doi.org/10.1140/epjd/e2012-20631-6
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.jcp.2007.02.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007121776
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.nima.2007.02.035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053467881
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.physrep.2004.08.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043961193
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/s0031-8914(36)80313-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025788162
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/s0169-4332(99)00162-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049991443
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/s0969-806x(03)00194-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019198934
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1049/mnl.2014.0239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056885591
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1063/1.1882292 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057830182
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1063/1.2390690 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057854022
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1063/1.347601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057958261
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1063/1.4789880 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058068728
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1063/1.4862554 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058088947
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1063/1.862577 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058115773
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1063/1.862904 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058116098
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1063/1.865580 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058118770
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1063/1.872299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058124409
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1063/1.872837 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058124940
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1063/1.874128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058126208
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1103/physrev.67.260 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060452501
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1103/physrevb.58.1193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060589070
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1103/physrevlett.44.654 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060785076
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1103/physrevlett.50.167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060788535
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1103/physrevlett.59.2975 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060796113
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1103/physrevlett.60.1290 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060796694
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1103/physrevlett.85.1883 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060821755
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1103/physrevlett.85.2510 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060821859
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1103/revmodphys.60.701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839161
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1103/revmodphys.71.87 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839460
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1143/jpsj.36.603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063100809
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1147/rd.112.0215 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063179709
192 rdf:type schema:CreativeWork
193 https://www.grid.ac/institutes/grid.30064.31 schema:alternateName Washington State University
194 schema:name Center for Materials Research, Washington State University, 99164-2711, Pullman, WA, USA
195 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...