Stochastic dynamics, efficiency and sustainable power production View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-03

AUTHORS

M. Moreau, B. Gaveau, L.S. Schulman

ABSTRACT

In the framework of stochastic thermodynamics, we give a precise expression of power dissipation in a heat engine, and study the relation between entropy and power dissipation. Using these relations, we propose a reasonable and general definition of efficiency for thermal engines in a non-equilibrium stationary state. This definition, different from Carnot efficiency, seems appropriate to the concerns of sustainable development. We show that non-zero dissipation is necessary for producing non-vanishing power. Furthermore, close to equilibrium and even in much broader situations, when power production is maximum with respect to relevant variables the power dissipation is at less equal to the power delivered to a mechanical, external system, and the corresponding “sustainable efficiency” is at most ½. From this result, we deduce a new upper bound for Carnot efficiency at maximum power. It is compared to similar, but different upper bounds obtained previously by other authors. More... »

PAGES

67-71

References to SciGraph publications

  • 1984-06. Stability criteria and fluctuations around nonequilibrium states in ZEITSCHRIFT FÜR PHYSIK B CONDENSED MATTER
  • 2007-04. Fluctuation Theorem for Currents and Schnakenberg Network Theory in JOURNAL OF STATISTICAL PHYSICS
  • 2003-03. Creation, Dissipation and Recycling of Resources in Non-Equilibrium Systems in JOURNAL OF STATISTICAL PHYSICS
  • 1995-09. Dynamical ensembles in stationary states in JOURNAL OF STATISTICAL PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1140/epjd/e2010-00270-9

    DOI

    http://dx.doi.org/10.1140/epjd/e2010-00270-9

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1052729305


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Interdisciplinary Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Sorbonne University", 
              "id": "https://www.grid.ac/institutes/grid.462844.8", 
              "name": [
                "Universit\u00e9 Pierre et Marie Curie, D\u00e9partement de Math\u00e9mathiques, Tour 16, Bo\u00eete\n121, 75252, Paris Cedex 05, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Moreau", 
            "givenName": "M.", 
            "id": "sg:person.0602427525.91", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0602427525.91"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Sorbonne University", 
              "id": "https://www.grid.ac/institutes/grid.462844.8", 
              "name": [
                "Universit\u00e9 Pierre et Marie Curie-CNRS, LPTMC (UMR\n7600), Bo\u00eete 121, 75252, Paris Cedex 05, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gaveau", 
            "givenName": "B.", 
            "id": "sg:person.011754127724.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011754127724.08"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Clarkson University", 
              "id": "https://www.grid.ac/institutes/grid.254280.9", 
              "name": [
                "Clarkson University, Dept of Physics, 13699-5820, Potsdam, NY, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Schulman", 
            "givenName": "L.S.", 
            "id": "sg:person.010275521604.97", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010275521604.97"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1088/0305-4470/31/16/003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001044582"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1515/jnetdy.1999.020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005176638"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1022165431214", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005442473", 
              "https://doi.org/10.1023/a:1022165431214"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.81.041106", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012721778"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.81.041106", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012721778"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.76.031132", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015217692"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.76.031132", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015217692"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02179860", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020627908", 
              "https://doi.org/10.1007/bf02179860"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02179860", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020627908", 
              "https://doi.org/10.1007/bf02179860"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.79.010102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023591277"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.79.010102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023591277"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01469698", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028743422", 
              "https://doi.org/10.1007/bf01469698"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1209/0295-5075/83/60003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031148750"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.74.2694", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031383800"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.74.2694", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031383800"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1751-8113/41/31/312003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040597869"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.95.040602", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041733512"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.95.040602", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041733512"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1515/jnetdy.2003.015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043663006"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10955-006-9233-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043823536", 
              "https://doi.org/10.1007/s10955-006-9233-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.73.036124", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043838265"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.73.036124", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043838265"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.102.130602", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045528228"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.102.130602", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045528228"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physleta.2008.01.081", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046256460"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.80.021121", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051675303"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.80.021121", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051675303"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1209/0295-5075/85/60010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053273027"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1209/0295-5075/85/60010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053273027"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.532394", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058108754"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.105.060601", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060757299"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.105.060601", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060757299"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.95.190602", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060831119"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.95.190602", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060831119"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1119/1.10023", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062227125"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1143/ptps.130.17", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063142441"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1209/0295-5075/81/20003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064231896"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2011-03", 
        "datePublishedReg": "2011-03-01", 
        "description": "In the framework of stochastic thermodynamics, we give a precise expression of power dissipation in a heat engine, and study the relation between entropy and power dissipation. Using these relations, we propose a reasonable and general definition of efficiency for thermal engines in a non-equilibrium stationary state. This definition, different from Carnot efficiency, seems appropriate to the concerns of sustainable development. We show that non-zero dissipation is necessary for producing non-vanishing power. Furthermore, close to equilibrium and even in much broader situations, when power production is maximum with respect to relevant variables the power dissipation is at less equal to the power delivered to a mechanical, external system, and the corresponding \u201csustainable efficiency\u201d is at most \u00bd. From this result, we deduce a new upper bound for Carnot efficiency at maximum power. It is compared to similar, but different upper bounds obtained previously by other authors.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1140/epjd/e2010-00270-9", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1295077", 
            "issn": [
              "1434-6060", 
              "1434-6079"
            ], 
            "name": "The European Physical Journal D", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "62"
          }
        ], 
        "name": "Stochastic dynamics, efficiency and sustainable power production", 
        "pagination": "67-71", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "fb2a60e85686deb4245658a7939bc1259bc1bc26f57505cba4a7cd7d4b0fbb9b"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1140/epjd/e2010-00270-9"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1052729305"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1140/epjd/e2010-00270-9", 
          "https://app.dimensions.ai/details/publication/pub.1052729305"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T21:36", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000508.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1140%2Fepjd%2Fe2010-00270-9"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epjd/e2010-00270-9'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epjd/e2010-00270-9'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epjd/e2010-00270-9'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epjd/e2010-00270-9'


     

    This table displays all metadata directly associated to this object as RDF triples.

    158 TRIPLES      21 PREDICATES      52 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1140/epjd/e2010-00270-9 schema:about anzsrc-for:09
    2 anzsrc-for:0915
    3 schema:author N4ceaaafa377543469ca20fe63e9a0cd5
    4 schema:citation sg:pub.10.1007/bf01469698
    5 sg:pub.10.1007/bf02179860
    6 sg:pub.10.1007/s10955-006-9233-5
    7 sg:pub.10.1023/a:1022165431214
    8 https://doi.org/10.1016/j.physleta.2008.01.081
    9 https://doi.org/10.1063/1.532394
    10 https://doi.org/10.1088/0305-4470/31/16/003
    11 https://doi.org/10.1088/1751-8113/41/31/312003
    12 https://doi.org/10.1103/physreve.73.036124
    13 https://doi.org/10.1103/physreve.76.031132
    14 https://doi.org/10.1103/physreve.79.010102
    15 https://doi.org/10.1103/physreve.80.021121
    16 https://doi.org/10.1103/physreve.81.041106
    17 https://doi.org/10.1103/physrevlett.102.130602
    18 https://doi.org/10.1103/physrevlett.105.060601
    19 https://doi.org/10.1103/physrevlett.74.2694
    20 https://doi.org/10.1103/physrevlett.95.040602
    21 https://doi.org/10.1103/physrevlett.95.190602
    22 https://doi.org/10.1119/1.10023
    23 https://doi.org/10.1143/ptps.130.17
    24 https://doi.org/10.1209/0295-5075/81/20003
    25 https://doi.org/10.1209/0295-5075/83/60003
    26 https://doi.org/10.1209/0295-5075/85/60010
    27 https://doi.org/10.1515/jnetdy.1999.020
    28 https://doi.org/10.1515/jnetdy.2003.015
    29 schema:datePublished 2011-03
    30 schema:datePublishedReg 2011-03-01
    31 schema:description In the framework of stochastic thermodynamics, we give a precise expression of power dissipation in a heat engine, and study the relation between entropy and power dissipation. Using these relations, we propose a reasonable and general definition of efficiency for thermal engines in a non-equilibrium stationary state. This definition, different from Carnot efficiency, seems appropriate to the concerns of sustainable development. We show that non-zero dissipation is necessary for producing non-vanishing power. Furthermore, close to equilibrium and even in much broader situations, when power production is maximum with respect to relevant variables the power dissipation is at less equal to the power delivered to a mechanical, external system, and the corresponding “sustainable efficiency” is at most ½. From this result, we deduce a new upper bound for Carnot efficiency at maximum power. It is compared to similar, but different upper bounds obtained previously by other authors.
    32 schema:genre research_article
    33 schema:inLanguage en
    34 schema:isAccessibleForFree false
    35 schema:isPartOf N0334692bff5941ceb14584fc8d67ea13
    36 Nb56f0b7b60c4409fb028ee9713d291ae
    37 sg:journal.1295077
    38 schema:name Stochastic dynamics, efficiency and sustainable power production
    39 schema:pagination 67-71
    40 schema:productId N60c4adbd3f1741fd941c9cf122c913eb
    41 Nc13acfef2f9e4e468865f2ffbd4060d0
    42 Nd9196657d73e4eccba3820df64301f32
    43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052729305
    44 https://doi.org/10.1140/epjd/e2010-00270-9
    45 schema:sdDatePublished 2019-04-10T21:36
    46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    47 schema:sdPublisher N8741ae7a63ac497da2b10fc08260164b
    48 schema:url http://link.springer.com/10.1140%2Fepjd%2Fe2010-00270-9
    49 sgo:license sg:explorer/license/
    50 sgo:sdDataset articles
    51 rdf:type schema:ScholarlyArticle
    52 N0334692bff5941ceb14584fc8d67ea13 schema:issueNumber 1
    53 rdf:type schema:PublicationIssue
    54 N08536e74d6e7430bbb8ae369594c73e2 rdf:first sg:person.011754127724.08
    55 rdf:rest Ne7f66afb764842e0b3f79c8b757d0afc
    56 N4ceaaafa377543469ca20fe63e9a0cd5 rdf:first sg:person.0602427525.91
    57 rdf:rest N08536e74d6e7430bbb8ae369594c73e2
    58 N60c4adbd3f1741fd941c9cf122c913eb schema:name doi
    59 schema:value 10.1140/epjd/e2010-00270-9
    60 rdf:type schema:PropertyValue
    61 N8741ae7a63ac497da2b10fc08260164b schema:name Springer Nature - SN SciGraph project
    62 rdf:type schema:Organization
    63 Nb56f0b7b60c4409fb028ee9713d291ae schema:volumeNumber 62
    64 rdf:type schema:PublicationVolume
    65 Nc13acfef2f9e4e468865f2ffbd4060d0 schema:name readcube_id
    66 schema:value fb2a60e85686deb4245658a7939bc1259bc1bc26f57505cba4a7cd7d4b0fbb9b
    67 rdf:type schema:PropertyValue
    68 Nd9196657d73e4eccba3820df64301f32 schema:name dimensions_id
    69 schema:value pub.1052729305
    70 rdf:type schema:PropertyValue
    71 Ne7f66afb764842e0b3f79c8b757d0afc rdf:first sg:person.010275521604.97
    72 rdf:rest rdf:nil
    73 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    74 schema:name Engineering
    75 rdf:type schema:DefinedTerm
    76 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
    77 schema:name Interdisciplinary Engineering
    78 rdf:type schema:DefinedTerm
    79 sg:journal.1295077 schema:issn 1434-6060
    80 1434-6079
    81 schema:name The European Physical Journal D
    82 rdf:type schema:Periodical
    83 sg:person.010275521604.97 schema:affiliation https://www.grid.ac/institutes/grid.254280.9
    84 schema:familyName Schulman
    85 schema:givenName L.S.
    86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010275521604.97
    87 rdf:type schema:Person
    88 sg:person.011754127724.08 schema:affiliation https://www.grid.ac/institutes/grid.462844.8
    89 schema:familyName Gaveau
    90 schema:givenName B.
    91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011754127724.08
    92 rdf:type schema:Person
    93 sg:person.0602427525.91 schema:affiliation https://www.grid.ac/institutes/grid.462844.8
    94 schema:familyName Moreau
    95 schema:givenName M.
    96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0602427525.91
    97 rdf:type schema:Person
    98 sg:pub.10.1007/bf01469698 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028743422
    99 https://doi.org/10.1007/bf01469698
    100 rdf:type schema:CreativeWork
    101 sg:pub.10.1007/bf02179860 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020627908
    102 https://doi.org/10.1007/bf02179860
    103 rdf:type schema:CreativeWork
    104 sg:pub.10.1007/s10955-006-9233-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043823536
    105 https://doi.org/10.1007/s10955-006-9233-5
    106 rdf:type schema:CreativeWork
    107 sg:pub.10.1023/a:1022165431214 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005442473
    108 https://doi.org/10.1023/a:1022165431214
    109 rdf:type schema:CreativeWork
    110 https://doi.org/10.1016/j.physleta.2008.01.081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046256460
    111 rdf:type schema:CreativeWork
    112 https://doi.org/10.1063/1.532394 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058108754
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.1088/0305-4470/31/16/003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001044582
    115 rdf:type schema:CreativeWork
    116 https://doi.org/10.1088/1751-8113/41/31/312003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040597869
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1103/physreve.73.036124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043838265
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1103/physreve.76.031132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015217692
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1103/physreve.79.010102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023591277
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1103/physreve.80.021121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051675303
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1103/physreve.81.041106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012721778
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1103/physrevlett.102.130602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045528228
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1103/physrevlett.105.060601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060757299
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1103/physrevlett.74.2694 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031383800
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1103/physrevlett.95.040602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041733512
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1103/physrevlett.95.190602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060831119
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1119/1.10023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062227125
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1143/ptps.130.17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063142441
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1209/0295-5075/81/20003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064231896
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1209/0295-5075/83/60003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031148750
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1209/0295-5075/85/60010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053273027
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1515/jnetdy.1999.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005176638
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1515/jnetdy.2003.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043663006
    151 rdf:type schema:CreativeWork
    152 https://www.grid.ac/institutes/grid.254280.9 schema:alternateName Clarkson University
    153 schema:name Clarkson University, Dept of Physics, 13699-5820, Potsdam, NY, USA
    154 rdf:type schema:Organization
    155 https://www.grid.ac/institutes/grid.462844.8 schema:alternateName Sorbonne University
    156 schema:name Université Pierre et Marie Curie, Département de Mathémathiques, Tour 16, Boîte 121, 75252, Paris Cedex 05, France
    157 Université Pierre et Marie Curie-CNRS, LPTMC (UMR 7600), Boîte 121, 75252, Paris Cedex 05, France
    158 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...