Signatures of the Unruh effect via high-power, short-pulse lasers View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2009-11

AUTHORS

P. G. Thirolf, D. Habs, A. Henig, D. Jung, D. Kiefer, C. Lang, J. Schreiber, C. Maia, G. Schaller, R. Schützhold, T. Tajima

ABSTRACT

The ultra-high fields of high-power short-pulse lasers are expected to contribute to understanding fundamental properties of the quantum vacuum and quantum theory in very strong fields. For example, the neutral QED vacuum breaks down at the Schwinger field strength of 1.3×1018 V/m, where a virtual e+e- pair gains its rest mass energy over a Compton wavelength and materializes as a real pair. At such an ultra-high field strength, an electron experiences an acceleration of aS=2×1028g and hence fundamental phenomena such as the long predicted Unruh effect start to play a role. The Unruh effect implies that the accelerated electron experiences the vacuum as a thermal bath with the Unruh temperature. In its accelerated frame the electron scatters photons off the thermal bath, corresponding to the emission of an entangled pair of photons in the laboratory frame. While it remains an experimental challenge to reach the critical Schwinger field strength within the immediate future even in view of the enormous thrust in high-power laser developments in recent years, the near-future laser technology may allow to probe the signatures of the Unruh effect mentioned above. Using a laser-accelerated electron beam (γ∼300) and a counter-propagating laser beam acting as optical undulator should allow to create entangled Unruh photon pairs (i.e., signatures of the Unruh effect) with energies of the order of several hundred keV. An even substantially improved experimental scenario can be realized by using a brilliant 20 keV photon beam as X-ray undulator together with a low-energy (γ≈2) electron beam. In this case the separation of the Unruh photon pairs from background originating from linearly accelerated electrons (classical Larmor radiation) is significantly improved. Detection of the Unruh photons may be envisaged by Compton polarimetry in a 2D-segmented position-sensitive germanium detector. More... »

PAGES

379-389

Identifiers

URI

http://scigraph.springernature.com/pub.10.1140/epjd/e2009-00149-x

DOI

http://dx.doi.org/10.1140/epjd/e2009-00149-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1040937014


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ludwig Maximilian University of Munich", 
          "id": "https://www.grid.ac/institutes/grid.5252.0", 
          "name": [
            "Faculty of Physics, Ludwig-Maximilians-University M\u00fcnchen, 85748, Garching, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thirolf", 
        "givenName": "P. G.", 
        "id": "sg:person.012353620001.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012353620001.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute of Quantum Optics", 
          "id": "https://www.grid.ac/institutes/grid.450272.6", 
          "name": [
            "Faculty of Physics, Ludwig-Maximilians-University M\u00fcnchen, 85748, Garching, Germany", 
            "Max-Planck Institute of Quantum Optics, 85748, Garching, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Habs", 
        "givenName": "D.", 
        "id": "sg:person.07714114705.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07714114705.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ludwig Maximilian University of Munich", 
          "id": "https://www.grid.ac/institutes/grid.5252.0", 
          "name": [
            "Faculty of Physics, Ludwig-Maximilians-University M\u00fcnchen, 85748, Garching, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Henig", 
        "givenName": "A.", 
        "id": "sg:person.014544036753.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014544036753.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ludwig Maximilian University of Munich", 
          "id": "https://www.grid.ac/institutes/grid.5252.0", 
          "name": [
            "Faculty of Physics, Ludwig-Maximilians-University M\u00fcnchen, 85748, Garching, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jung", 
        "givenName": "D.", 
        "id": "sg:person.01211253306.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01211253306.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ludwig Maximilian University of Munich", 
          "id": "https://www.grid.ac/institutes/grid.5252.0", 
          "name": [
            "Faculty of Physics, Ludwig-Maximilians-University M\u00fcnchen, 85748, Garching, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kiefer", 
        "givenName": "D.", 
        "id": "sg:person.01100666006.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100666006.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ludwig Maximilian University of Munich", 
          "id": "https://www.grid.ac/institutes/grid.5252.0", 
          "name": [
            "Faculty of Physics, Ludwig-Maximilians-University M\u00fcnchen, 85748, Garching, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lang", 
        "givenName": "C.", 
        "id": "sg:person.01217050415.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217050415.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imperial College London", 
          "id": "https://www.grid.ac/institutes/grid.7445.2", 
          "name": [
            "Faculty of Physics, Ludwig-Maximilians-University M\u00fcnchen, 85748, Garching, Germany", 
            "Imperial College, SW7 2AZ, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schreiber", 
        "givenName": "J.", 
        "id": "sg:person.01100745404.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100745404.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Duisburg-Essen", 
          "id": "https://www.grid.ac/institutes/grid.5718.b", 
          "name": [
            "Fachbereich Physik, University of Duisburg-Essen, 47048, Duisburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maia", 
        "givenName": "C.", 
        "id": "sg:person.015345664547.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015345664547.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University of Berlin", 
          "id": "https://www.grid.ac/institutes/grid.6734.6", 
          "name": [
            "Institut f\u00fcr Theoretische Physik, TU Berlin, 10623, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schaller", 
        "givenName": "G.", 
        "id": "sg:person.01122473146.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01122473146.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Duisburg-Essen", 
          "id": "https://www.grid.ac/institutes/grid.5718.b", 
          "name": [
            "Fachbereich Physik, University of Duisburg-Essen, 47048, Duisburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sch\u00fctzhold", 
        "givenName": "R.", 
        "id": "sg:person.01336202652.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336202652.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ludwig Maximilian University of Munich", 
          "id": "https://www.grid.ac/institutes/grid.5252.0", 
          "name": [
            "Faculty of Physics, Ludwig-Maximilians-University M\u00fcnchen, 85748, Garching, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tajima", 
        "givenName": "T.", 
        "id": "sg:person.016710216215.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016710216215.40"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature02939", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000739651", 
          "https://doi.org/10.1038/nature02939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02939", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000739651", 
          "https://doi.org/10.1038/nature02939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0909049599015113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003769521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02963", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005399057", 
          "https://doi.org/10.1038/nature02963"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02963", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005399057", 
          "https://doi.org/10.1038/nature02963"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01339461", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006813641", 
          "https://doi.org/10.1007/bf01339461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02345020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010701796", 
          "https://doi.org/10.1007/bf02345020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02345020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010701796", 
          "https://doi.org/10.1007/bf02345020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.121302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013183071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.121302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013183071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0909049597020232", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034654976"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0029-554x(79)90733-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034971036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0029-554x(79)90733-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034971036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.130404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035101559"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.130404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035101559"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(87)90047-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035846117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(87)90047-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035846117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ppnp.2004.09.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035870857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0370-1573(98)00068-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036229420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-9002(99)00615-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042183825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02900", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042278002", 
          "https://doi.org/10.1038/nature02900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02900", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042278002", 
          "https://doi.org/10.1038/nature02900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00340-008-3239-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043790784", 
          "https://doi.org/10.1007/s00340-008-3239-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00340-008-3239-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043790784", 
          "https://doi.org/10.1007/s00340-008-3239-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys418", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045050360", 
          "https://doi.org/10.1038/nphys418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys418", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045050360", 
          "https://doi.org/10.1038/nphys418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjd/e2009-00038-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047296613", 
          "https://doi.org/10.1140/epjd/e2009-00038-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjd/e2009-00038-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047296613", 
          "https://doi.org/10.1140/epjd/e2009-00038-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/9/11/415", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050570224"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.091301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052788978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.091301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052788978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.14.870", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060684547"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.14.870", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060684547"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.29.1047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060691044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.29.1047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060691044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.45.r3308", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060700413"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.45.r3308", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060700413"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.215004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060753523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.215004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060753523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.23.854", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060773064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.23.854", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060773064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.26.684", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060774675"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.26.684", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060774675"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.83.256", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060820081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.83.256", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060820081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.103903", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060830014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.103903", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060830014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.80.787", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.80.787", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839666"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-11", 
    "datePublishedReg": "2009-11-01", 
    "description": "The ultra-high fields of high-power short-pulse lasers are expected to contribute to understanding fundamental properties of the quantum vacuum and quantum theory in very strong fields. For example, the neutral QED vacuum breaks down at the Schwinger field strength of 1.3\u00d71018 V/m, where a virtual e+e- pair gains its rest mass energy over a Compton wavelength and materializes as a real pair. At such an ultra-high field strength, an electron experiences an acceleration of aS=2\u00d71028g and hence fundamental phenomena such as the long predicted Unruh effect start to play a role. The Unruh effect implies that the accelerated electron experiences the vacuum as a thermal bath with the Unruh temperature. In its accelerated frame the electron scatters photons off the thermal bath, corresponding to the emission of an entangled pair of photons in the laboratory frame. While it remains an experimental challenge to reach the critical Schwinger field strength within the immediate future even in view of the enormous thrust in high-power laser developments in recent years, the near-future laser technology may allow to probe the signatures of the Unruh effect mentioned above. Using a laser-accelerated electron beam (\u03b3\u223c300) and a counter-propagating laser beam acting as optical undulator should allow to create entangled Unruh photon pairs (i.e., signatures of the Unruh effect) with energies of the order of several hundred keV. An even substantially improved experimental scenario can be realized by using a brilliant 20 keV photon beam as X-ray undulator together with a low-energy (\u03b3\u22482) electron beam. In this case the separation of the Unruh photon pairs from background originating from linearly accelerated electrons (classical Larmor radiation) is significantly improved. Detection of the Unruh photons may be envisaged by Compton polarimetry in a 2D-segmented position-sensitive germanium detector.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1140/epjd/e2009-00149-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1295077", 
        "issn": [
          "1434-6060", 
          "1434-6079"
        ], 
        "name": "The European Physical Journal D", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "55"
      }
    ], 
    "name": "Signatures of the Unruh effect via high-power, short-pulse lasers", 
    "pagination": "379-389", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c30297e1dc1bc696e500600488eb5c3f0f1417f426e5cb94a2a19e2b2603b79d"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1140/epjd/e2009-00149-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1040937014"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1140/epjd/e2009-00149-x", 
      "https://app.dimensions.ai/details/publication/pub.1040937014"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000339_0000000339/records_109521_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1140%2Fepjd%2Fe2009-00149-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epjd/e2009-00149-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epjd/e2009-00149-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epjd/e2009-00149-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epjd/e2009-00149-x'


 

This table displays all metadata directly associated to this object as RDF triples.

237 TRIPLES      21 PREDICATES      55 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1140/epjd/e2009-00149-x schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author Nce4a353a0f174a8ba22c89faae6c4729
4 schema:citation sg:pub.10.1007/bf01339461
5 sg:pub.10.1007/bf02345020
6 sg:pub.10.1007/s00340-008-3239-4
7 sg:pub.10.1038/nature02900
8 sg:pub.10.1038/nature02939
9 sg:pub.10.1038/nature02963
10 sg:pub.10.1038/nphys418
11 sg:pub.10.1140/epjd/e2009-00038-4
12 https://doi.org/10.1016/0029-554x(79)90733-x
13 https://doi.org/10.1016/0550-3213(87)90047-2
14 https://doi.org/10.1016/j.ppnp.2004.09.001
15 https://doi.org/10.1016/s0168-9002(99)00615-4
16 https://doi.org/10.1016/s0370-1573(98)00068-4
17 https://doi.org/10.1088/1367-2630/9/11/415
18 https://doi.org/10.1103/physrevd.14.870
19 https://doi.org/10.1103/physrevd.29.1047
20 https://doi.org/10.1103/physrevd.45.r3308
21 https://doi.org/10.1103/physrevlett.100.091301
22 https://doi.org/10.1103/physrevlett.100.215004
23 https://doi.org/10.1103/physrevlett.101.130404
24 https://doi.org/10.1103/physrevlett.23.854
25 https://doi.org/10.1103/physrevlett.26.684
26 https://doi.org/10.1103/physrevlett.83.256
27 https://doi.org/10.1103/physrevlett.94.103903
28 https://doi.org/10.1103/physrevlett.97.121302
29 https://doi.org/10.1103/revmodphys.80.787
30 https://doi.org/10.1107/s0909049597020232
31 https://doi.org/10.1107/s0909049599015113
32 schema:datePublished 2009-11
33 schema:datePublishedReg 2009-11-01
34 schema:description The ultra-high fields of high-power short-pulse lasers are expected to contribute to understanding fundamental properties of the quantum vacuum and quantum theory in very strong fields. For example, the neutral QED vacuum breaks down at the Schwinger field strength of 1.3×1018 V/m, where a virtual e+e- pair gains its rest mass energy over a Compton wavelength and materializes as a real pair. At such an ultra-high field strength, an electron experiences an acceleration of aS=2×1028g and hence fundamental phenomena such as the long predicted Unruh effect start to play a role. The Unruh effect implies that the accelerated electron experiences the vacuum as a thermal bath with the Unruh temperature. In its accelerated frame the electron scatters photons off the thermal bath, corresponding to the emission of an entangled pair of photons in the laboratory frame. While it remains an experimental challenge to reach the critical Schwinger field strength within the immediate future even in view of the enormous thrust in high-power laser developments in recent years, the near-future laser technology may allow to probe the signatures of the Unruh effect mentioned above. Using a laser-accelerated electron beam (γ∼300) and a counter-propagating laser beam acting as optical undulator should allow to create entangled Unruh photon pairs (i.e., signatures of the Unruh effect) with energies of the order of several hundred keV. An even substantially improved experimental scenario can be realized by using a brilliant 20 keV photon beam as X-ray undulator together with a low-energy (γ≈2) electron beam. In this case the separation of the Unruh photon pairs from background originating from linearly accelerated electrons (classical Larmor radiation) is significantly improved. Detection of the Unruh photons may be envisaged by Compton polarimetry in a 2D-segmented position-sensitive germanium detector.
35 schema:genre research_article
36 schema:inLanguage en
37 schema:isAccessibleForFree false
38 schema:isPartOf N427b55525a5c412da173ae059b196607
39 N4b6eba36651944cca06909a156bafe27
40 sg:journal.1295077
41 schema:name Signatures of the Unruh effect via high-power, short-pulse lasers
42 schema:pagination 379-389
43 schema:productId N06cd746665784f1fa59029bed7713427
44 Nad65a3b6b2f44f7781c4c27449646431
45 Nf0db7c4575d44c97b6e42ae7dcd7e2d4
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040937014
47 https://doi.org/10.1140/epjd/e2009-00149-x
48 schema:sdDatePublished 2019-04-11T09:20
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher Ndb42fcfa2c33485dbf1157cd07fb01f0
51 schema:url http://link.springer.com/10.1140%2Fepjd%2Fe2009-00149-x
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N06cd746665784f1fa59029bed7713427 schema:name readcube_id
56 schema:value c30297e1dc1bc696e500600488eb5c3f0f1417f426e5cb94a2a19e2b2603b79d
57 rdf:type schema:PropertyValue
58 N427b55525a5c412da173ae059b196607 schema:issueNumber 2
59 rdf:type schema:PublicationIssue
60 N4b6eba36651944cca06909a156bafe27 schema:volumeNumber 55
61 rdf:type schema:PublicationVolume
62 N835408819bf04c0f918f88eb9b5b7f50 rdf:first sg:person.07714114705.85
63 rdf:rest Nd5ce0f0f69da484285fb01293f362604
64 N9141e2d3cc6342d489b071d422b5e325 rdf:first sg:person.01336202652.32
65 rdf:rest Ne4d3c66d58cc4f9b9d38ce70066a96ac
66 Na7a19ee214ff4b82a8299321c9d171e8 rdf:first sg:person.01100666006.28
67 rdf:rest Nd74331456fbe4ff698fd6ed2d6e203b4
68 Nad65a3b6b2f44f7781c4c27449646431 schema:name doi
69 schema:value 10.1140/epjd/e2009-00149-x
70 rdf:type schema:PropertyValue
71 Nc04aff6b78444ba680f94e04681f8f07 rdf:first sg:person.01211253306.93
72 rdf:rest Na7a19ee214ff4b82a8299321c9d171e8
73 Nce4a353a0f174a8ba22c89faae6c4729 rdf:first sg:person.012353620001.28
74 rdf:rest N835408819bf04c0f918f88eb9b5b7f50
75 Nd5ce0f0f69da484285fb01293f362604 rdf:first sg:person.014544036753.56
76 rdf:rest Nc04aff6b78444ba680f94e04681f8f07
77 Nd6941fe3c54543db9d905b3a73b84608 rdf:first sg:person.015345664547.15
78 rdf:rest Nfdd3e5022b574118b447bc32114d0890
79 Nd74331456fbe4ff698fd6ed2d6e203b4 rdf:first sg:person.01217050415.37
80 rdf:rest Ndb4a858372454de8a4c051f3aa3b9a45
81 Ndb42fcfa2c33485dbf1157cd07fb01f0 schema:name Springer Nature - SN SciGraph project
82 rdf:type schema:Organization
83 Ndb4a858372454de8a4c051f3aa3b9a45 rdf:first sg:person.01100745404.22
84 rdf:rest Nd6941fe3c54543db9d905b3a73b84608
85 Ne4d3c66d58cc4f9b9d38ce70066a96ac rdf:first sg:person.016710216215.40
86 rdf:rest rdf:nil
87 Nf0db7c4575d44c97b6e42ae7dcd7e2d4 schema:name dimensions_id
88 schema:value pub.1040937014
89 rdf:type schema:PropertyValue
90 Nfdd3e5022b574118b447bc32114d0890 rdf:first sg:person.01122473146.29
91 rdf:rest N9141e2d3cc6342d489b071d422b5e325
92 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
93 schema:name Physical Sciences
94 rdf:type schema:DefinedTerm
95 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
96 schema:name Other Physical Sciences
97 rdf:type schema:DefinedTerm
98 sg:journal.1295077 schema:issn 1434-6060
99 1434-6079
100 schema:name The European Physical Journal D
101 rdf:type schema:Periodical
102 sg:person.01100666006.28 schema:affiliation https://www.grid.ac/institutes/grid.5252.0
103 schema:familyName Kiefer
104 schema:givenName D.
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100666006.28
106 rdf:type schema:Person
107 sg:person.01100745404.22 schema:affiliation https://www.grid.ac/institutes/grid.7445.2
108 schema:familyName Schreiber
109 schema:givenName J.
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100745404.22
111 rdf:type schema:Person
112 sg:person.01122473146.29 schema:affiliation https://www.grid.ac/institutes/grid.6734.6
113 schema:familyName Schaller
114 schema:givenName G.
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01122473146.29
116 rdf:type schema:Person
117 sg:person.01211253306.93 schema:affiliation https://www.grid.ac/institutes/grid.5252.0
118 schema:familyName Jung
119 schema:givenName D.
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01211253306.93
121 rdf:type schema:Person
122 sg:person.01217050415.37 schema:affiliation https://www.grid.ac/institutes/grid.5252.0
123 schema:familyName Lang
124 schema:givenName C.
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217050415.37
126 rdf:type schema:Person
127 sg:person.012353620001.28 schema:affiliation https://www.grid.ac/institutes/grid.5252.0
128 schema:familyName Thirolf
129 schema:givenName P. G.
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012353620001.28
131 rdf:type schema:Person
132 sg:person.01336202652.32 schema:affiliation https://www.grid.ac/institutes/grid.5718.b
133 schema:familyName Schützhold
134 schema:givenName R.
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336202652.32
136 rdf:type schema:Person
137 sg:person.014544036753.56 schema:affiliation https://www.grid.ac/institutes/grid.5252.0
138 schema:familyName Henig
139 schema:givenName A.
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014544036753.56
141 rdf:type schema:Person
142 sg:person.015345664547.15 schema:affiliation https://www.grid.ac/institutes/grid.5718.b
143 schema:familyName Maia
144 schema:givenName C.
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015345664547.15
146 rdf:type schema:Person
147 sg:person.016710216215.40 schema:affiliation https://www.grid.ac/institutes/grid.5252.0
148 schema:familyName Tajima
149 schema:givenName T.
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016710216215.40
151 rdf:type schema:Person
152 sg:person.07714114705.85 schema:affiliation https://www.grid.ac/institutes/grid.450272.6
153 schema:familyName Habs
154 schema:givenName D.
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07714114705.85
156 rdf:type schema:Person
157 sg:pub.10.1007/bf01339461 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006813641
158 https://doi.org/10.1007/bf01339461
159 rdf:type schema:CreativeWork
160 sg:pub.10.1007/bf02345020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010701796
161 https://doi.org/10.1007/bf02345020
162 rdf:type schema:CreativeWork
163 sg:pub.10.1007/s00340-008-3239-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043790784
164 https://doi.org/10.1007/s00340-008-3239-4
165 rdf:type schema:CreativeWork
166 sg:pub.10.1038/nature02900 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042278002
167 https://doi.org/10.1038/nature02900
168 rdf:type schema:CreativeWork
169 sg:pub.10.1038/nature02939 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000739651
170 https://doi.org/10.1038/nature02939
171 rdf:type schema:CreativeWork
172 sg:pub.10.1038/nature02963 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005399057
173 https://doi.org/10.1038/nature02963
174 rdf:type schema:CreativeWork
175 sg:pub.10.1038/nphys418 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045050360
176 https://doi.org/10.1038/nphys418
177 rdf:type schema:CreativeWork
178 sg:pub.10.1140/epjd/e2009-00038-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047296613
179 https://doi.org/10.1140/epjd/e2009-00038-4
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/0029-554x(79)90733-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1034971036
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/0550-3213(87)90047-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035846117
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/j.ppnp.2004.09.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035870857
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/s0168-9002(99)00615-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042183825
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/s0370-1573(98)00068-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036229420
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1088/1367-2630/9/11/415 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050570224
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1103/physrevd.14.870 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060684547
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1103/physrevd.29.1047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060691044
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1103/physrevd.45.r3308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060700413
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1103/physrevlett.100.091301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052788978
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1103/physrevlett.100.215004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060753523
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1103/physrevlett.101.130404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035101559
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1103/physrevlett.23.854 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060773064
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1103/physrevlett.26.684 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060774675
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1103/physrevlett.83.256 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060820081
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1103/physrevlett.94.103903 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060830014
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1103/physrevlett.97.121302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013183071
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1103/revmodphys.80.787 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839666
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1107/s0909049597020232 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034654976
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1107/s0909049599015113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003769521
220 rdf:type schema:CreativeWork
221 https://www.grid.ac/institutes/grid.450272.6 schema:alternateName Max Planck Institute of Quantum Optics
222 schema:name Faculty of Physics, Ludwig-Maximilians-University München, 85748, Garching, Germany
223 Max-Planck Institute of Quantum Optics, 85748, Garching, Germany
224 rdf:type schema:Organization
225 https://www.grid.ac/institutes/grid.5252.0 schema:alternateName Ludwig Maximilian University of Munich
226 schema:name Faculty of Physics, Ludwig-Maximilians-University München, 85748, Garching, Germany
227 rdf:type schema:Organization
228 https://www.grid.ac/institutes/grid.5718.b schema:alternateName University of Duisburg-Essen
229 schema:name Fachbereich Physik, University of Duisburg-Essen, 47048, Duisburg, Germany
230 rdf:type schema:Organization
231 https://www.grid.ac/institutes/grid.6734.6 schema:alternateName Technical University of Berlin
232 schema:name Institut für Theoretische Physik, TU Berlin, 10623, Berlin, Germany
233 rdf:type schema:Organization
234 https://www.grid.ac/institutes/grid.7445.2 schema:alternateName Imperial College London
235 schema:name Faculty of Physics, Ludwig-Maximilians-University München, 85748, Garching, Germany
236 Imperial College, SW7 2AZ, London, UK
237 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...