Ontology type: schema:ScholarlyArticle Open Access: True
2003-08
AUTHORS ABSTRACT.We study possible saturation effects in the total crosssections describing the interaction of ultra-high energy neutrinos with nucleons. This analysis is performed within two approaches, i.e., within the Golec-Biernat-Wüsthoff saturation model and within the scheme unifying the DGLAP and BFKL dynamics incorporating non-linear screening effects which follow from the Balitzki-Kovchegov equation. The structure functions in both approaches are constrained by HERA data. It is found that screening effects affect the extrapolation of the neutrino-nucleon total cross-sections to ultra-high neutrino energies \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$E_{\nu}$\end{document} and reduce their magnitude by a factor equal to about 2 at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$E_{\nu} \sim 10^{12}$\end{document} GeV. This reduction becomes amplified by nuclear shadowing in the case of the neutrino-nucleus cross-sections and an approximate estimate of this effect is performed. More... »
PAGES521-530
http://scigraph.springernature.com/pub.10.1140/epjc/s2003-01236-y
DOIhttp://dx.doi.org/10.1140/epjc/s2003-01236-y
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1027176240
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Other Physical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "H. Niewodniczanski Institute of Nuclear Physics, Krak\u00f3w, Poland",
"id": "http://www.grid.ac/institutes/grid.418860.3",
"name": [
"H. Niewodniczanski Institute of Nuclear Physics, Krak\u00f3w, Poland"
],
"type": "Organization"
},
"familyName": "Kutak",
"givenName": "K.",
"id": "sg:person.0756220625.99",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0756220625.99"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "H. Niewodniczanski Institute of Nuclear Physics, Krak\u00f3w, Poland",
"id": "http://www.grid.ac/institutes/grid.418860.3",
"name": [
"H. Niewodniczanski Institute of Nuclear Physics, Krak\u00f3w, Poland"
],
"type": "Organization"
},
"familyName": "Kwiecinski",
"givenName": "J.",
"id": "sg:person.012602141471.54",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012602141471.54"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf01558562",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1013321593",
"https://doi.org/10.1007/bf01558562"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01624586",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1034597479",
"https://doi.org/10.1007/bf01624586"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01560292",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1042882325",
"https://doi.org/10.1007/bf01560292"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1088/1126-6708/2002/10/012",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1047279340",
"https://doi.org/10.1088/1126-6708/2002/10/012"
],
"type": "CreativeWork"
}
],
"datePublished": "2003-08",
"datePublishedReg": "2003-08-01",
"description": "Abstract.We study possible saturation effects in the total crosssections describing the interaction of ultra-high energy neutrinos with nucleons. This analysis is performed within two approaches, i.e., within the Golec-Biernat-W\u00fcsthoff saturation model and within the scheme unifying the DGLAP and BFKL dynamics incorporating non-linear screening effects which follow from the Balitzki-Kovchegov equation. The structure functions in both approaches are constrained by HERA data. It is found that screening effects affect the extrapolation of the neutrino-nucleon total cross-sections to ultra-high neutrino energies \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$E_{\\nu}$\\end{document} and reduce their magnitude by a factor equal to about 2 at \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$E_{\\nu} \\sim 10^{12}$\\end{document} GeV. This reduction becomes amplified by nuclear shadowing in the case of the neutrino-nucleus cross-sections and an approximate estimate of this effect is performed.",
"genre": "article",
"id": "sg:pub.10.1140/epjc/s2003-01236-y",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1049394",
"issn": [
"1434-6044",
"1434-6052"
],
"name": "European Physical Journal C",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "4",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "29"
}
],
"keywords": [
"ultra-high energy neutrino interactions",
"ultra-high energy neutrinos",
"non\u2010linear screening effect",
"energy neutrinos",
"possible saturation effects",
"neutrino interactions",
"neutrino energy",
"nuclear shadowing",
"structure functions",
"approximate estimate",
"screening effect",
"HERA data",
"BFKL dynamics",
"saturation effects",
"saturation model",
"total crosssections",
"equations",
"Golec-Biernat",
"neutrinos",
"nucleon",
"scheme",
"dynamics",
"approach",
"energy",
"crosssection",
"DGLAP",
"estimates",
"model",
"interaction",
"extrapolation",
"shadowing",
"function",
"magnitude",
"cases",
"effect",
"analysis",
"data",
"reduction",
"factors"
],
"name": "Screening effects in the ultra-high energy neutrino interactions",
"pagination": "521-530",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1027176240"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1140/epjc/s2003-01236-y"
]
}
],
"sameAs": [
"https://doi.org/10.1140/epjc/s2003-01236-y",
"https://app.dimensions.ai/details/publication/pub.1027176240"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:22",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_370.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1140/epjc/s2003-01236-y"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epjc/s2003-01236-y'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epjc/s2003-01236-y'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epjc/s2003-01236-y'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epjc/s2003-01236-y'
This table displays all metadata directly associated to this object as RDF triples.
120 TRIPLES
22 PREDICATES
69 URIs
57 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1140/epjc/s2003-01236-y | schema:about | anzsrc-for:02 |
2 | ″ | ″ | anzsrc-for:0299 |
3 | ″ | schema:author | Na1556ee4fe1547cc84d30add6f93277a |
4 | ″ | schema:citation | sg:pub.10.1007/bf01558562 |
5 | ″ | ″ | sg:pub.10.1007/bf01560292 |
6 | ″ | ″ | sg:pub.10.1007/bf01624586 |
7 | ″ | ″ | sg:pub.10.1088/1126-6708/2002/10/012 |
8 | ″ | schema:datePublished | 2003-08 |
9 | ″ | schema:datePublishedReg | 2003-08-01 |
10 | ″ | schema:description | Abstract.We study possible saturation effects in the total crosssections describing the interaction of ultra-high energy neutrinos with nucleons. This analysis is performed within two approaches, i.e., within the Golec-Biernat-Wüsthoff saturation model and within the scheme unifying the DGLAP and BFKL dynamics incorporating non-linear screening effects which follow from the Balitzki-Kovchegov equation. The structure functions in both approaches are constrained by HERA data. It is found that screening effects affect the extrapolation of the neutrino-nucleon total cross-sections to ultra-high neutrino energies \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$E_{\nu}$\end{document} and reduce their magnitude by a factor equal to about 2 at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$E_{\nu} \sim 10^{12}$\end{document} GeV. This reduction becomes amplified by nuclear shadowing in the case of the neutrino-nucleus cross-sections and an approximate estimate of this effect is performed. |
11 | ″ | schema:genre | article |
12 | ″ | schema:inLanguage | en |
13 | ″ | schema:isAccessibleForFree | true |
14 | ″ | schema:isPartOf | N2996aa5db52c46368cfef16c68ebde42 |
15 | ″ | ″ | N3104f0aa9065402b8cc882a8f6f5c331 |
16 | ″ | ″ | sg:journal.1049394 |
17 | ″ | schema:keywords | BFKL dynamics |
18 | ″ | ″ | DGLAP |
19 | ″ | ″ | Golec-Biernat |
20 | ″ | ″ | HERA data |
21 | ″ | ″ | analysis |
22 | ″ | ″ | approach |
23 | ″ | ″ | approximate estimate |
24 | ″ | ″ | cases |
25 | ″ | ″ | crosssection |
26 | ″ | ″ | data |
27 | ″ | ″ | dynamics |
28 | ″ | ″ | effect |
29 | ″ | ″ | energy |
30 | ″ | ″ | energy neutrinos |
31 | ″ | ″ | equations |
32 | ″ | ″ | estimates |
33 | ″ | ″ | extrapolation |
34 | ″ | ″ | factors |
35 | ″ | ″ | function |
36 | ″ | ″ | interaction |
37 | ″ | ″ | magnitude |
38 | ″ | ″ | model |
39 | ″ | ″ | neutrino energy |
40 | ″ | ″ | neutrino interactions |
41 | ″ | ″ | neutrinos |
42 | ″ | ″ | non‐linear screening effect |
43 | ″ | ″ | nuclear shadowing |
44 | ″ | ″ | nucleon |
45 | ″ | ″ | possible saturation effects |
46 | ″ | ″ | reduction |
47 | ″ | ″ | saturation effects |
48 | ″ | ″ | saturation model |
49 | ″ | ″ | scheme |
50 | ″ | ″ | screening effect |
51 | ″ | ″ | shadowing |
52 | ″ | ″ | structure functions |
53 | ″ | ″ | total crosssections |
54 | ″ | ″ | ultra-high energy neutrino interactions |
55 | ″ | ″ | ultra-high energy neutrinos |
56 | ″ | schema:name | Screening effects in the ultra-high energy neutrino interactions |
57 | ″ | schema:pagination | 521-530 |
58 | ″ | schema:productId | N0ef01d3435024870a1b8d99569856bfa |
59 | ″ | ″ | N2595367fb78d4c9c8d3127070291dce4 |
60 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1027176240 |
61 | ″ | ″ | https://doi.org/10.1140/epjc/s2003-01236-y |
62 | ″ | schema:sdDatePublished | 2022-05-20T07:22 |
63 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
64 | ″ | schema:sdPublisher | N6e60a9ac3196401f916c32bdb5311ad0 |
65 | ″ | schema:url | https://doi.org/10.1140/epjc/s2003-01236-y |
66 | ″ | sgo:license | sg:explorer/license/ |
67 | ″ | sgo:sdDataset | articles |
68 | ″ | rdf:type | schema:ScholarlyArticle |
69 | N0ef01d3435024870a1b8d99569856bfa | schema:name | doi |
70 | ″ | schema:value | 10.1140/epjc/s2003-01236-y |
71 | ″ | rdf:type | schema:PropertyValue |
72 | N2595367fb78d4c9c8d3127070291dce4 | schema:name | dimensions_id |
73 | ″ | schema:value | pub.1027176240 |
74 | ″ | rdf:type | schema:PropertyValue |
75 | N2996aa5db52c46368cfef16c68ebde42 | schema:issueNumber | 4 |
76 | ″ | rdf:type | schema:PublicationIssue |
77 | N3104f0aa9065402b8cc882a8f6f5c331 | schema:volumeNumber | 29 |
78 | ″ | rdf:type | schema:PublicationVolume |
79 | N63c06628ae684c12b943e29326d65312 | rdf:first | sg:person.012602141471.54 |
80 | ″ | rdf:rest | rdf:nil |
81 | N6e60a9ac3196401f916c32bdb5311ad0 | schema:name | Springer Nature - SN SciGraph project |
82 | ″ | rdf:type | schema:Organization |
83 | Na1556ee4fe1547cc84d30add6f93277a | rdf:first | sg:person.0756220625.99 |
84 | ″ | rdf:rest | N63c06628ae684c12b943e29326d65312 |
85 | anzsrc-for:02 | schema:inDefinedTermSet | anzsrc-for: |
86 | ″ | schema:name | Physical Sciences |
87 | ″ | rdf:type | schema:DefinedTerm |
88 | anzsrc-for:0299 | schema:inDefinedTermSet | anzsrc-for: |
89 | ″ | schema:name | Other Physical Sciences |
90 | ″ | rdf:type | schema:DefinedTerm |
91 | sg:journal.1049394 | schema:issn | 1434-6044 |
92 | ″ | ″ | 1434-6052 |
93 | ″ | schema:name | European Physical Journal C |
94 | ″ | schema:publisher | Springer Nature |
95 | ″ | rdf:type | schema:Periodical |
96 | sg:person.012602141471.54 | schema:affiliation | grid-institutes:grid.418860.3 |
97 | ″ | schema:familyName | Kwiecinski |
98 | ″ | schema:givenName | J. |
99 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012602141471.54 |
100 | ″ | rdf:type | schema:Person |
101 | sg:person.0756220625.99 | schema:affiliation | grid-institutes:grid.418860.3 |
102 | ″ | schema:familyName | Kutak |
103 | ″ | schema:givenName | K. |
104 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0756220625.99 |
105 | ″ | rdf:type | schema:Person |
106 | sg:pub.10.1007/bf01558562 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1013321593 |
107 | ″ | ″ | https://doi.org/10.1007/bf01558562 |
108 | ″ | rdf:type | schema:CreativeWork |
109 | sg:pub.10.1007/bf01560292 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1042882325 |
110 | ″ | ″ | https://doi.org/10.1007/bf01560292 |
111 | ″ | rdf:type | schema:CreativeWork |
112 | sg:pub.10.1007/bf01624586 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1034597479 |
113 | ″ | ″ | https://doi.org/10.1007/bf01624586 |
114 | ″ | rdf:type | schema:CreativeWork |
115 | sg:pub.10.1088/1126-6708/2002/10/012 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1047279340 |
116 | ″ | ″ | https://doi.org/10.1088/1126-6708/2002/10/012 |
117 | ″ | rdf:type | schema:CreativeWork |
118 | grid-institutes:grid.418860.3 | schema:alternateName | H. Niewodniczanski Institute of Nuclear Physics, Kraków, Poland |
119 | ″ | schema:name | H. Niewodniczanski Institute of Nuclear Physics, Kraków, Poland |
120 | ″ | rdf:type | schema:Organization |