Confronting spectral functions from ee annihilation and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tau$\end{document} decays: consequences for ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2003-04

AUTHORS

M. Davier, S. Eidelman, A. Höcker, Z. Zhang

ABSTRACT

Vacuum polarization integrals involve the vector spectral functions which can be experimentally determined from two sources: (i) e+e- annihilation cross sections and (ii) hadronic \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tau$\end{document} decays. Recently results with comparable precision have become available from CMD-2 on one side, and ALEPH, CLEO and OPAL on the other. The comparison of the respective spectral functions involves a correction from isospin-breaking effects, which is evaluated. After the correction it is found that the dominant \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\pi\pi$\end{document} spectral functions do not agree within experimental and theoretical uncertainties. Some disagreement is also found for the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$4\pi$\end{document} spectral functions. The consequences of these discrepancies for vacuum polarization calculations are presented, with the emphasis on the muon anomalous magnetic moment. The work includes a complete re-evaluation of all exclusive cross sections, taking into account the most recent data that became available in particular from the Novosibirsk experiments and applying corrections for the missing radiative corrections. The values found for the lowest-order hadronic vacuum polarization contributions are \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\begin{eqnarray} a_{\mu}^{had,LO} = \left\{\begin{array{ll} (684.7 \pm 6.0_{exp} \pm 3.6_{rad}) 10^{-10} & [e^+e^--based] , \\ (709.0 \pm 5.1_{exp} \pm 1.2_{rad} \pm 2.8_{SU(2)}) 10^{-10} & [\tau -based] ,\end{array}\end{eqnarray}\end{document} where the errors have been separated according to their sources: experimental, missing radiative corrections in e+e- data, and isospin breaking. The Standard Model predictions for the muon magnetic anomaly read \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\begin{eqnarray} a_{\mu} = \left\{ \begin{array}{ll} (11 659 169.3 \pm 7.0_{had} \pm 3.5_{LBL} \pm 0.4_{QED+EW}) 10^{-10} & [e^+e^--based] ,\\ (11 659 193.6\pm5.9_{had} \pm3.5_{LBL}\pm0.4_{QED+EW}) 10^{-10} & [\tau -based] , \end{array}\end{eqnarray}\end{document} where the errors account for the hadronic, light-by-light scattering and electroweak contributions. We observe deviations with the recent BNL measurement at the 3.0 (e+e-) and 0.9 (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tau$\end{document}) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sigma$\end{document} level, when adding experimental and theoretical errors in quadrature. More... »

PAGES

497-521

Identifiers

URI

http://scigraph.springernature.com/pub.10.1140/epjc/s2003-01136-2

DOI

http://dx.doi.org/10.1140/epjc/s2003-01136-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1039313625


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Laboratoire de l'Acc\u00e9l\u00e9rateur Lin\u00e9aire", 
          "id": "https://www.grid.ac/institutes/grid.462450.1", 
          "name": [
            "Laboratoire de l'Acc\u00e9l\u00e9rateur Lin\u00e9aire, IN2P3-CNRS et Universit\u00e9 de Paris-Sud, 91898 Orsay, France, FR"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Davier", 
        "givenName": "M.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Budker Institute of Nuclear Physics", 
          "id": "https://www.grid.ac/institutes/grid.418495.5", 
          "name": [
            "Budker Institute of Nuclear Physics, Novosibirsk, 630090, Russia, RU"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Eidelman", 
        "givenName": "S.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire de l'Acc\u00e9l\u00e9rateur Lin\u00e9aire", 
          "id": "https://www.grid.ac/institutes/grid.462450.1", 
          "name": [
            "Laboratoire de l'Acc\u00e9l\u00e9rateur Lin\u00e9aire, IN2P3-CNRS et Universit\u00e9 de Paris-Sud, 91898 Orsay, France, FR"
          ], 
          "type": "Organization"
        }, 
        "familyName": "H\u00f6cker", 
        "givenName": "A.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire de l'Acc\u00e9l\u00e9rateur Lin\u00e9aire", 
          "id": "https://www.grid.ac/institutes/grid.462450.1", 
          "name": [
            "Laboratoire de l'Acc\u00e9l\u00e9rateur Lin\u00e9aire, IN2P3-CNRS et Universit\u00e9 de Paris-Sud, 91898 Orsay, France, FR"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Z.", 
        "type": "Person"
      }
    ], 
    "datePublished": "2003-04", 
    "datePublishedReg": "2003-04-01", 
    "description": "Vacuum polarization integrals involve the vector spectral functions which can be experimentally determined from two sources: (i) e+e- annihilation cross sections and (ii) hadronic \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\\tau$\\end{document} decays. Recently results with comparable precision have become available from CMD-2 on one side, and ALEPH, CLEO and OPAL on the other. The comparison of the respective spectral functions involves a correction from isospin-breaking effects, which is evaluated. After the correction it is found that the dominant \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\\pi\\pi$\\end{document} spectral functions do not agree within experimental and theoretical uncertainties. Some disagreement is also found for the \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$4\\pi$\\end{document} spectral functions. The consequences of these discrepancies for vacuum polarization calculations are presented, with the emphasis on the muon anomalous magnetic moment. The work includes a complete re-evaluation of all exclusive cross sections, taking into account the most recent data that became available in particular from the Novosibirsk experiments and applying corrections for the missing radiative corrections. The values found for the lowest-order hadronic vacuum polarization contributions are \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}\\begin{eqnarray} a_{\\mu}^{had,LO} = \\left\\{\\begin{array{ll} (684.7 \\pm 6.0_{exp} \\pm 3.6_{rad}) 10^{-10} & [e^+e^--based] , \\\\ (709.0 \\pm 5.1_{exp} \\pm 1.2_{rad} \\pm 2.8_{SU(2)}) 10^{-10} & [\\tau -based] ,\\end{array}\\end{eqnarray}\\end{document} where the errors have been separated according to their sources: experimental, missing radiative corrections in e+e- data, and isospin breaking. The Standard Model predictions for the muon magnetic anomaly read \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}\\begin{eqnarray} a_{\\mu} = \\left\\{ \\begin{array}{ll} (11 659 169.3 \\pm 7.0_{had} \\pm 3.5_{LBL} \\pm 0.4_{QED+EW}) 10^{-10} & [e^+e^--based] ,\\\\ (11 659 193.6\\pm5.9_{had} \\pm3.5_{LBL}\\pm0.4_{QED+EW}) 10^{-10} & [\\tau -based] , \\end{array}\\end{eqnarray}\\end{document} where the errors account for the hadronic, light-by-light scattering and electroweak contributions. We observe deviations with the recent BNL measurement at the 3.0 (e+e-) and 0.9 (\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\\tau$\\end{document}) \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\\sigma$\\end{document} level, when adding experimental and theoretical errors in quadrature.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1140/epjc/s2003-01136-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1049394", 
        "issn": [
          "1434-6044", 
          "1434-6052"
        ], 
        "name": "The European Physical Journal C", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "27"
      }
    ], 
    "name": "Confronting spectral functions from ee annihilation and \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\\tau$\\end{document} decays: consequences for the muon magnetic moment", 
    "pagination": "497-521", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "bb44d4ddd5ea0d44511c2c43f2fb3cc7b19c58b1344f2acea142619155d06181"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1140/epjc/s2003-01136-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1039313625"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1140/epjc/s2003-01136-2", 
      "https://app.dimensions.ai/details/publication/pub.1039313625"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000507.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1140%2Fepjc%2Fs2003-01136-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epjc/s2003-01136-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epjc/s2003-01136-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epjc/s2003-01136-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epjc/s2003-01136-2'


 

This table displays all metadata directly associated to this object as RDF triples.

81 TRIPLES      20 PREDICATES      27 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1140/epjc/s2003-01136-2 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author Nca32b5d2087d4b8a9e27d56b89403b6c
4 schema:datePublished 2003-04
5 schema:datePublishedReg 2003-04-01
6 schema:description Vacuum polarization integrals involve the vector spectral functions which can be experimentally determined from two sources: (i) e+e- annihilation cross sections and (ii) hadronic \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tau$\end{document} decays. Recently results with comparable precision have become available from CMD-2 on one side, and ALEPH, CLEO and OPAL on the other. The comparison of the respective spectral functions involves a correction from isospin-breaking effects, which is evaluated. After the correction it is found that the dominant \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\pi\pi$\end{document} spectral functions do not agree within experimental and theoretical uncertainties. Some disagreement is also found for the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$4\pi$\end{document} spectral functions. The consequences of these discrepancies for vacuum polarization calculations are presented, with the emphasis on the muon anomalous magnetic moment. The work includes a complete re-evaluation of all exclusive cross sections, taking into account the most recent data that became available in particular from the Novosibirsk experiments and applying corrections for the missing radiative corrections. The values found for the lowest-order hadronic vacuum polarization contributions are \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\begin{eqnarray} a_{\mu}^{had,LO} = \left\{\begin{array{ll} (684.7 \pm 6.0_{exp} \pm 3.6_{rad}) 10^{-10} & [e^+e^--based] , \\ (709.0 \pm 5.1_{exp} \pm 1.2_{rad} \pm 2.8_{SU(2)}) 10^{-10} & [\tau -based] ,\end{array}\end{eqnarray}\end{document} where the errors have been separated according to their sources: experimental, missing radiative corrections in e+e- data, and isospin breaking. The Standard Model predictions for the muon magnetic anomaly read \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\begin{eqnarray} a_{\mu} = \left\{ \begin{array}{ll} (11 659 169.3 \pm 7.0_{had} \pm 3.5_{LBL} \pm 0.4_{QED+EW}) 10^{-10} & [e^+e^--based] ,\\ (11 659 193.6\pm5.9_{had} \pm3.5_{LBL}\pm0.4_{QED+EW}) 10^{-10} & [\tau -based] , \end{array}\end{eqnarray}\end{document} where the errors account for the hadronic, light-by-light scattering and electroweak contributions. We observe deviations with the recent BNL measurement at the 3.0 (e+e-) and 0.9 (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tau$\end{document}) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sigma$\end{document} level, when adding experimental and theoretical errors in quadrature.
7 schema:genre research_article
8 schema:inLanguage en
9 schema:isAccessibleForFree true
10 schema:isPartOf N7558373a614c480088aab4536fe8602a
11 Naa6456b85d6146f185562dd434ebfc5e
12 sg:journal.1049394
13 schema:name Confronting spectral functions from ee annihilation and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tau$\end{document} decays: consequences for the muon magnetic moment
14 schema:pagination 497-521
15 schema:productId N468ca28c1e1f41ef8fc55c34c6734dc3
16 N72c36f8d8600444480da3cd171f11197
17 Nd62c8f5c90214fbfa52f84547ac8130e
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039313625
19 https://doi.org/10.1140/epjc/s2003-01136-2
20 schema:sdDatePublished 2019-04-10T18:19
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher N0649ad09a1574c9384c44e9bb4a02848
23 schema:url http://link.springer.com/10.1140%2Fepjc%2Fs2003-01136-2
24 sgo:license sg:explorer/license/
25 sgo:sdDataset articles
26 rdf:type schema:ScholarlyArticle
27 N0649ad09a1574c9384c44e9bb4a02848 schema:name Springer Nature - SN SciGraph project
28 rdf:type schema:Organization
29 N1006943af7c34bbf8954dc8f72b55233 rdf:first N2d24bfab06eb400b82823b9e5f2ca2ba
30 rdf:rest N8f3dea71bd6b49bcb37eadcde39d3a7a
31 N2d24bfab06eb400b82823b9e5f2ca2ba schema:affiliation https://www.grid.ac/institutes/grid.462450.1
32 schema:familyName Höcker
33 schema:givenName A.
34 rdf:type schema:Person
35 N468ca28c1e1f41ef8fc55c34c6734dc3 schema:name dimensions_id
36 schema:value pub.1039313625
37 rdf:type schema:PropertyValue
38 N51ea3a6d457e48e4ac578c2fa0755310 schema:affiliation https://www.grid.ac/institutes/grid.462450.1
39 schema:familyName Zhang
40 schema:givenName Z.
41 rdf:type schema:Person
42 N72c36f8d8600444480da3cd171f11197 schema:name doi
43 schema:value 10.1140/epjc/s2003-01136-2
44 rdf:type schema:PropertyValue
45 N7558373a614c480088aab4536fe8602a schema:volumeNumber 27
46 rdf:type schema:PublicationVolume
47 N8f3dea71bd6b49bcb37eadcde39d3a7a rdf:first N51ea3a6d457e48e4ac578c2fa0755310
48 rdf:rest rdf:nil
49 Naa6456b85d6146f185562dd434ebfc5e schema:issueNumber 4
50 rdf:type schema:PublicationIssue
51 Nca32b5d2087d4b8a9e27d56b89403b6c rdf:first Nda6239d5e571437c9bbccb97c9dc6fd6
52 rdf:rest Ndbe9ebe9082d476d94904ab05379d5fc
53 Nd62c8f5c90214fbfa52f84547ac8130e schema:name readcube_id
54 schema:value bb44d4ddd5ea0d44511c2c43f2fb3cc7b19c58b1344f2acea142619155d06181
55 rdf:type schema:PropertyValue
56 Nda6239d5e571437c9bbccb97c9dc6fd6 schema:affiliation https://www.grid.ac/institutes/grid.462450.1
57 schema:familyName Davier
58 schema:givenName M.
59 rdf:type schema:Person
60 Ndbe9ebe9082d476d94904ab05379d5fc rdf:first Nfe40bb84c0db489f8cd3bd8f363ee4af
61 rdf:rest N1006943af7c34bbf8954dc8f72b55233
62 Nfe40bb84c0db489f8cd3bd8f363ee4af schema:affiliation https://www.grid.ac/institutes/grid.418495.5
63 schema:familyName Eidelman
64 schema:givenName S.
65 rdf:type schema:Person
66 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
67 schema:name Physical Sciences
68 rdf:type schema:DefinedTerm
69 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
70 schema:name Other Physical Sciences
71 rdf:type schema:DefinedTerm
72 sg:journal.1049394 schema:issn 1434-6044
73 1434-6052
74 schema:name The European Physical Journal C
75 rdf:type schema:Periodical
76 https://www.grid.ac/institutes/grid.418495.5 schema:alternateName Budker Institute of Nuclear Physics
77 schema:name Budker Institute of Nuclear Physics, Novosibirsk, 630090, Russia, RU
78 rdf:type schema:Organization
79 https://www.grid.ac/institutes/grid.462450.1 schema:alternateName Laboratoire de l'Accélérateur Linéaire
80 schema:name Laboratoire de l'Accélérateur Linéaire, IN2P3-CNRS et Université de Paris-Sud, 91898 Orsay, France, FR
81 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...