Confronting spectral functions from ee annihilation and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tau$\end{document} decays: consequences for ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2003-04

AUTHORS

M. Davier, S. Eidelman, A. Höcker, Z. Zhang

ABSTRACT

Vacuum polarization integrals involve the vector spectral functions which can be experimentally determined from two sources: (i) e+e- annihilation cross sections and (ii) hadronic \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tau$\end{document} decays. Recently results with comparable precision have become available from CMD-2 on one side, and ALEPH, CLEO and OPAL on the other. The comparison of the respective spectral functions involves a correction from isospin-breaking effects, which is evaluated. After the correction it is found that the dominant \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\pi\pi$\end{document} spectral functions do not agree within experimental and theoretical uncertainties. Some disagreement is also found for the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$4\pi$\end{document} spectral functions. The consequences of these discrepancies for vacuum polarization calculations are presented, with the emphasis on the muon anomalous magnetic moment. The work includes a complete re-evaluation of all exclusive cross sections, taking into account the most recent data that became available in particular from the Novosibirsk experiments and applying corrections for the missing radiative corrections. The values found for the lowest-order hadronic vacuum polarization contributions are \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\begin{eqnarray} a_{\mu}^{had,LO} = \left\{\begin{array{ll} (684.7 \pm 6.0_{exp} \pm 3.6_{rad}) 10^{-10} & [e^+e^--based] , \\ (709.0 \pm 5.1_{exp} \pm 1.2_{rad} \pm 2.8_{SU(2)}) 10^{-10} & [\tau -based] ,\end{array}\end{eqnarray}\end{document} where the errors have been separated according to their sources: experimental, missing radiative corrections in e+e- data, and isospin breaking. The Standard Model predictions for the muon magnetic anomaly read \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\begin{eqnarray} a_{\mu} = \left\{ \begin{array}{ll} (11 659 169.3 \pm 7.0_{had} \pm 3.5_{LBL} \pm 0.4_{QED+EW}) 10^{-10} & [e^+e^--based] ,\\ (11 659 193.6\pm5.9_{had} \pm3.5_{LBL}\pm0.4_{QED+EW}) 10^{-10} & [\tau -based] , \end{array}\end{eqnarray}\end{document} where the errors account for the hadronic, light-by-light scattering and electroweak contributions. We observe deviations with the recent BNL measurement at the 3.0 (e+e-) and 0.9 (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tau$\end{document}) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sigma$\end{document} level, when adding experimental and theoretical errors in quadrature. More... »

PAGES

497-521

Identifiers

URI

http://scigraph.springernature.com/pub.10.1140/epjc/s2003-01136-2

DOI

http://dx.doi.org/10.1140/epjc/s2003-01136-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1039313625


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Laboratoire de l'Acc\u00e9l\u00e9rateur Lin\u00e9aire", 
          "id": "https://www.grid.ac/institutes/grid.462450.1", 
          "name": [
            "Laboratoire de l'Acc\u00e9l\u00e9rateur Lin\u00e9aire, IN2P3-CNRS et Universit\u00e9 de Paris-Sud, 91898 Orsay, France, FR"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Davier", 
        "givenName": "M.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Budker Institute of Nuclear Physics", 
          "id": "https://www.grid.ac/institutes/grid.418495.5", 
          "name": [
            "Budker Institute of Nuclear Physics, Novosibirsk, 630090, Russia, RU"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Eidelman", 
        "givenName": "S.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire de l'Acc\u00e9l\u00e9rateur Lin\u00e9aire", 
          "id": "https://www.grid.ac/institutes/grid.462450.1", 
          "name": [
            "Laboratoire de l'Acc\u00e9l\u00e9rateur Lin\u00e9aire, IN2P3-CNRS et Universit\u00e9 de Paris-Sud, 91898 Orsay, France, FR"
          ], 
          "type": "Organization"
        }, 
        "familyName": "H\u00f6cker", 
        "givenName": "A.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire de l'Acc\u00e9l\u00e9rateur Lin\u00e9aire", 
          "id": "https://www.grid.ac/institutes/grid.462450.1", 
          "name": [
            "Laboratoire de l'Acc\u00e9l\u00e9rateur Lin\u00e9aire, IN2P3-CNRS et Universit\u00e9 de Paris-Sud, 91898 Orsay, France, FR"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Z.", 
        "type": "Person"
      }
    ], 
    "datePublished": "2003-04", 
    "datePublishedReg": "2003-04-01", 
    "description": "Vacuum polarization integrals involve the vector spectral functions which can be experimentally determined from two sources: (i) e+e- annihilation cross sections and (ii) hadronic \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\\tau$\\end{document} decays. Recently results with comparable precision have become available from CMD-2 on one side, and ALEPH, CLEO and OPAL on the other. The comparison of the respective spectral functions involves a correction from isospin-breaking effects, which is evaluated. After the correction it is found that the dominant \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\\pi\\pi$\\end{document} spectral functions do not agree within experimental and theoretical uncertainties. Some disagreement is also found for the \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$4\\pi$\\end{document} spectral functions. The consequences of these discrepancies for vacuum polarization calculations are presented, with the emphasis on the muon anomalous magnetic moment. The work includes a complete re-evaluation of all exclusive cross sections, taking into account the most recent data that became available in particular from the Novosibirsk experiments and applying corrections for the missing radiative corrections. The values found for the lowest-order hadronic vacuum polarization contributions are \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}\\begin{eqnarray} a_{\\mu}^{had,LO} = \\left\\{\\begin{array{ll} (684.7 \\pm 6.0_{exp} \\pm 3.6_{rad}) 10^{-10} & [e^+e^--based] , \\\\ (709.0 \\pm 5.1_{exp} \\pm 1.2_{rad} \\pm 2.8_{SU(2)}) 10^{-10} & [\\tau -based] ,\\end{array}\\end{eqnarray}\\end{document} where the errors have been separated according to their sources: experimental, missing radiative corrections in e+e- data, and isospin breaking. The Standard Model predictions for the muon magnetic anomaly read \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}\\begin{eqnarray} a_{\\mu} = \\left\\{ \\begin{array}{ll} (11 659 169.3 \\pm 7.0_{had} \\pm 3.5_{LBL} \\pm 0.4_{QED+EW}) 10^{-10} & [e^+e^--based] ,\\\\ (11 659 193.6\\pm5.9_{had} \\pm3.5_{LBL}\\pm0.4_{QED+EW}) 10^{-10} & [\\tau -based] , \\end{array}\\end{eqnarray}\\end{document} where the errors account for the hadronic, light-by-light scattering and electroweak contributions. We observe deviations with the recent BNL measurement at the 3.0 (e+e-) and 0.9 (\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\\tau$\\end{document}) \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\\sigma$\\end{document} level, when adding experimental and theoretical errors in quadrature.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1140/epjc/s2003-01136-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1049394", 
        "issn": [
          "1434-6044", 
          "1434-6052"
        ], 
        "name": "The European Physical Journal C", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "27"
      }
    ], 
    "name": "Confronting spectral functions from ee annihilation and \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\\tau$\\end{document} decays: consequences for the muon magnetic moment", 
    "pagination": "497-521", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "bb44d4ddd5ea0d44511c2c43f2fb3cc7b19c58b1344f2acea142619155d06181"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1140/epjc/s2003-01136-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1039313625"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1140/epjc/s2003-01136-2", 
      "https://app.dimensions.ai/details/publication/pub.1039313625"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000507.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1140%2Fepjc%2Fs2003-01136-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epjc/s2003-01136-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epjc/s2003-01136-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epjc/s2003-01136-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epjc/s2003-01136-2'


 

This table displays all metadata directly associated to this object as RDF triples.

81 TRIPLES      20 PREDICATES      27 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1140/epjc/s2003-01136-2 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author N4cf523f0ecb242f89764a67a566fce91
4 schema:datePublished 2003-04
5 schema:datePublishedReg 2003-04-01
6 schema:description Vacuum polarization integrals involve the vector spectral functions which can be experimentally determined from two sources: (i) e+e- annihilation cross sections and (ii) hadronic \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tau$\end{document} decays. Recently results with comparable precision have become available from CMD-2 on one side, and ALEPH, CLEO and OPAL on the other. The comparison of the respective spectral functions involves a correction from isospin-breaking effects, which is evaluated. After the correction it is found that the dominant \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\pi\pi$\end{document} spectral functions do not agree within experimental and theoretical uncertainties. Some disagreement is also found for the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$4\pi$\end{document} spectral functions. The consequences of these discrepancies for vacuum polarization calculations are presented, with the emphasis on the muon anomalous magnetic moment. The work includes a complete re-evaluation of all exclusive cross sections, taking into account the most recent data that became available in particular from the Novosibirsk experiments and applying corrections for the missing radiative corrections. The values found for the lowest-order hadronic vacuum polarization contributions are \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\begin{eqnarray} a_{\mu}^{had,LO} = \left\{\begin{array{ll} (684.7 \pm 6.0_{exp} \pm 3.6_{rad}) 10^{-10} & [e^+e^--based] , \\ (709.0 \pm 5.1_{exp} \pm 1.2_{rad} \pm 2.8_{SU(2)}) 10^{-10} & [\tau -based] ,\end{array}\end{eqnarray}\end{document} where the errors have been separated according to their sources: experimental, missing radiative corrections in e+e- data, and isospin breaking. The Standard Model predictions for the muon magnetic anomaly read \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\begin{eqnarray} a_{\mu} = \left\{ \begin{array}{ll} (11 659 169.3 \pm 7.0_{had} \pm 3.5_{LBL} \pm 0.4_{QED+EW}) 10^{-10} & [e^+e^--based] ,\\ (11 659 193.6\pm5.9_{had} \pm3.5_{LBL}\pm0.4_{QED+EW}) 10^{-10} & [\tau -based] , \end{array}\end{eqnarray}\end{document} where the errors account for the hadronic, light-by-light scattering and electroweak contributions. We observe deviations with the recent BNL measurement at the 3.0 (e+e-) and 0.9 (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tau$\end{document}) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sigma$\end{document} level, when adding experimental and theoretical errors in quadrature.
7 schema:genre research_article
8 schema:inLanguage en
9 schema:isAccessibleForFree true
10 schema:isPartOf N4a94726fbc3046d885bc8c10586bfcb5
11 N98afafbb491b419fa1718bc9b29ce288
12 sg:journal.1049394
13 schema:name Confronting spectral functions from ee annihilation and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tau$\end{document} decays: consequences for the muon magnetic moment
14 schema:pagination 497-521
15 schema:productId Nb55f0886c81340cd8f75ab9eba170138
16 Ndf2e9821077a40018a0c86114064f796
17 Nfb6c34c6020046e9a253c4f92e05b93f
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039313625
19 https://doi.org/10.1140/epjc/s2003-01136-2
20 schema:sdDatePublished 2019-04-10T18:19
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher N74957f491ca640a394933a9b2829f51f
23 schema:url http://link.springer.com/10.1140%2Fepjc%2Fs2003-01136-2
24 sgo:license sg:explorer/license/
25 sgo:sdDataset articles
26 rdf:type schema:ScholarlyArticle
27 N35b16dbbc1a846de8ae32644038dd10c rdf:first N8b35ca32a74645389db908581427c301
28 rdf:rest Nbb00bf5b70af44debdb81c5919e76c09
29 N4a94726fbc3046d885bc8c10586bfcb5 schema:volumeNumber 27
30 rdf:type schema:PublicationVolume
31 N4cf523f0ecb242f89764a67a566fce91 rdf:first N96cd6f7ce4124123b561b66d8859c43c
32 rdf:rest N749f711af9db4511a956b77686a707b6
33 N74957f491ca640a394933a9b2829f51f schema:name Springer Nature - SN SciGraph project
34 rdf:type schema:Organization
35 N749f711af9db4511a956b77686a707b6 rdf:first N9bde2f358e714452a8edac45ceb02e27
36 rdf:rest N35b16dbbc1a846de8ae32644038dd10c
37 N775831c982ed4bd6b5cae54eb6e40ff1 schema:affiliation https://www.grid.ac/institutes/grid.462450.1
38 schema:familyName Zhang
39 schema:givenName Z.
40 rdf:type schema:Person
41 N8b35ca32a74645389db908581427c301 schema:affiliation https://www.grid.ac/institutes/grid.462450.1
42 schema:familyName Höcker
43 schema:givenName A.
44 rdf:type schema:Person
45 N96cd6f7ce4124123b561b66d8859c43c schema:affiliation https://www.grid.ac/institutes/grid.462450.1
46 schema:familyName Davier
47 schema:givenName M.
48 rdf:type schema:Person
49 N98afafbb491b419fa1718bc9b29ce288 schema:issueNumber 4
50 rdf:type schema:PublicationIssue
51 N9bde2f358e714452a8edac45ceb02e27 schema:affiliation https://www.grid.ac/institutes/grid.418495.5
52 schema:familyName Eidelman
53 schema:givenName S.
54 rdf:type schema:Person
55 Nb55f0886c81340cd8f75ab9eba170138 schema:name doi
56 schema:value 10.1140/epjc/s2003-01136-2
57 rdf:type schema:PropertyValue
58 Nbb00bf5b70af44debdb81c5919e76c09 rdf:first N775831c982ed4bd6b5cae54eb6e40ff1
59 rdf:rest rdf:nil
60 Ndf2e9821077a40018a0c86114064f796 schema:name dimensions_id
61 schema:value pub.1039313625
62 rdf:type schema:PropertyValue
63 Nfb6c34c6020046e9a253c4f92e05b93f schema:name readcube_id
64 schema:value bb44d4ddd5ea0d44511c2c43f2fb3cc7b19c58b1344f2acea142619155d06181
65 rdf:type schema:PropertyValue
66 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
67 schema:name Physical Sciences
68 rdf:type schema:DefinedTerm
69 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
70 schema:name Other Physical Sciences
71 rdf:type schema:DefinedTerm
72 sg:journal.1049394 schema:issn 1434-6044
73 1434-6052
74 schema:name The European Physical Journal C
75 rdf:type schema:Periodical
76 https://www.grid.ac/institutes/grid.418495.5 schema:alternateName Budker Institute of Nuclear Physics
77 schema:name Budker Institute of Nuclear Physics, Novosibirsk, 630090, Russia, RU
78 rdf:type schema:Organization
79 https://www.grid.ac/institutes/grid.462450.1 schema:alternateName Laboratoire de l'Accélérateur Linéaire
80 schema:name Laboratoire de l'Accélérateur Linéaire, IN2P3-CNRS et Université de Paris-Sud, 91898 Orsay, France, FR
81 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...