Ontology type: schema:ScholarlyArticle Open Access: True
2020-09-29
AUTHORSSandip Chowdhury, Kunal Pal, Kuntal Pal, Tapobrata Sarkar
ABSTRACTCollapsing solutions in f(R) gravity are restricted due to junction conditions that demand continuity of the Ricci scalar and its normal derivative across the time-like collapsing hypersurface. These are obtained via the method of R-matching, which is ubiquitous in f(R) collapse scenarios. In this paper, we study spherically symmetric collapse with the modification term αR2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha R^2$$\end{document}, and use R-matching to exemplify a class of new solutions. After discussing some mathematical preliminaries by which we obtain an algebraic relation between the shear and the anisotropy in these theories, we consider two metric ansatzes. In the first, the collapsing metric is considered to be a separable function of the co-moving radius and time, and the collapse is shear-free, and in the second, a non-separable interior solution is considered, that represents gravitational collapse with non-zero shear viscosity. We arrive at novel solutions that indicate the formation of black holes or locally naked singularities, while obeying all the necessary energy conditions. The separable case allows for a simple analytic expression of the energy-momentum tensor, that indicates the positivity of the pressures throughout collapse, and is further used to study the heat flux evolution of the collapsing matter, whose analytic solutions are presented under certain approximations. These clearly highlight the role of modified gravity in the examples that we consider. More... »
PAGES902
http://scigraph.springernature.com/pub.10.1140/epjc/s10052-020-08459-w
DOIhttp://dx.doi.org/10.1140/epjc/s10052-020-08459-w
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1131297926
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Quantum Physics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Physics, Indian Institute of Technology, 208016, Kanpur, India",
"id": "http://www.grid.ac/institutes/grid.417965.8",
"name": [
"Department of Physics, Indian Institute of Technology, 208016, Kanpur, India"
],
"type": "Organization"
},
"familyName": "Chowdhury",
"givenName": "Sandip",
"id": "sg:person.07651506543.38",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07651506543.38"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Physics, Indian Institute of Technology, 208016, Kanpur, India",
"id": "http://www.grid.ac/institutes/grid.417965.8",
"name": [
"Department of Physics, Indian Institute of Technology, 208016, Kanpur, India"
],
"type": "Organization"
},
"familyName": "Pal",
"givenName": "Kunal",
"id": "sg:person.016541040353.45",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016541040353.45"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Physics, Indian Institute of Technology, 208016, Kanpur, India",
"id": "http://www.grid.ac/institutes/grid.417965.8",
"name": [
"Department of Physics, Indian Institute of Technology, 208016, Kanpur, India"
],
"type": "Organization"
},
"familyName": "Pal",
"givenName": "Kuntal",
"id": "sg:person.01044632674.34",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044632674.34"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Physics, Indian Institute of Technology, 208016, Kanpur, India",
"id": "http://www.grid.ac/institutes/grid.417965.8",
"name": [
"Department of Physics, Indian Institute of Technology, 208016, Kanpur, India"
],
"type": "Organization"
},
"familyName": "Sarkar",
"givenName": "Tapobrata",
"id": "sg:person.01217741634.65",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217741634.65"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s10714-008-0622-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012013307",
"https://doi.org/10.1007/s10714-008-0622-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02105423",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040792426",
"https://doi.org/10.1007/bf02105423"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10714-010-0931-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1034300263",
"https://doi.org/10.1007/s10714-010-0931-6"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10714-018-2472-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1107865323",
"https://doi.org/10.1007/s10714-018-2472-3"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1023/a:1018855621348",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001258110",
"https://doi.org/10.1023/a:1018855621348"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10714-016-2045-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052093215",
"https://doi.org/10.1007/s10714-016-2045-2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.12942/lrr-2010-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1064758169",
"https://doi.org/10.12942/lrr-2010-3"
],
"type": "CreativeWork"
}
],
"datePublished": "2020-09-29",
"datePublishedReg": "2020-09-29",
"description": "Collapsing solutions in f(R) gravity are restricted due to junction conditions that demand continuity of the Ricci scalar and its normal derivative across the time-like collapsing hypersurface. These are obtained via the method of R-matching, which is ubiquitous in f(R) collapse scenarios. In this paper, we study spherically symmetric collapse with the modification term \u03b1R2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\alpha R^2$$\\end{document}, and use R-matching to exemplify a class of new solutions. After discussing some mathematical preliminaries by which we obtain an algebraic relation between the shear and the anisotropy in these theories, we consider two metric ansatzes. In the first, the collapsing metric is considered to be a separable function of the co-moving radius and time, and the collapse is shear-free, and in the second, a non-separable interior solution is considered, that represents gravitational collapse with non-zero shear viscosity. We arrive at novel solutions that indicate the formation of black holes or locally naked singularities, while obeying all the necessary energy conditions. The separable case allows for a simple analytic expression of the energy-momentum tensor, that indicates the positivity of the pressures throughout collapse, and is further used to study the heat flux evolution of the collapsing matter, whose analytic solutions are presented under certain approximations. These clearly highlight the role of modified gravity in the examples that we consider.",
"genre": "article",
"id": "sg:pub.10.1140/epjc/s10052-020-08459-w",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1049394",
"issn": [
"1434-6044",
"1434-6052"
],
"name": "European Physical Journal C",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "9",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "80"
}
],
"keywords": [
"energy-momentum tensor",
"simple analytic expression",
"mathematical preliminaries",
"R matching",
"metric ansatz",
"Ricci scalar",
"algebraic relations",
"analytic solution",
"certain approximations",
"normal derivative",
"modification term",
"junction conditions",
"analytic expressions",
"black holes",
"interior solution",
"naked singularity",
"symmetric collapse",
"gravitational collapse",
"separable case",
"energy conditions",
"necessary energy condition",
"flux evolution",
"separable functions",
"heat flux evolution",
"gravity",
"new solutions",
"solution",
"ansatz",
"approximation",
"singularity",
"scalar",
"hypersurfaces",
"shear viscosity",
"tensor",
"anisotropy",
"novel solution",
"theory",
"class",
"preliminaries",
"holes",
"radius",
"metrics",
"terms",
"collapse",
"conditions",
"function",
"shear",
"continuity",
"matching",
"scenarios",
"evolution",
"derivatives",
"viscosity",
"cases",
"relation",
"time",
"matter",
"positivity",
"expression",
"pressure",
"formation",
"role",
"method",
"example",
"paper"
],
"name": "Collapse in f(R) gravity and the method of R matching",
"pagination": "902",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1131297926"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1140/epjc/s10052-020-08459-w"
]
}
],
"sameAs": [
"https://doi.org/10.1140/epjc/s10052-020-08459-w",
"https://app.dimensions.ai/details/publication/pub.1131297926"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:36",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_835.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1140/epjc/s10052-020-08459-w"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epjc/s10052-020-08459-w'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epjc/s10052-020-08459-w'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epjc/s10052-020-08459-w'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epjc/s10052-020-08459-w'
This table displays all metadata directly associated to this object as RDF triples.
176 TRIPLES
22 PREDICATES
98 URIs
82 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1140/epjc/s10052-020-08459-w | schema:about | anzsrc-for:02 |
2 | ″ | ″ | anzsrc-for:0202 |
3 | ″ | ″ | anzsrc-for:0206 |
4 | ″ | schema:author | Nceed501f86294841b30dc9dbb53c035d |
5 | ″ | schema:citation | sg:pub.10.1007/bf02105423 |
6 | ″ | ″ | sg:pub.10.1007/s10714-008-0622-8 |
7 | ″ | ″ | sg:pub.10.1007/s10714-010-0931-6 |
8 | ″ | ″ | sg:pub.10.1007/s10714-016-2045-2 |
9 | ″ | ″ | sg:pub.10.1007/s10714-018-2472-3 |
10 | ″ | ″ | sg:pub.10.1023/a:1018855621348 |
11 | ″ | ″ | sg:pub.10.12942/lrr-2010-3 |
12 | ″ | schema:datePublished | 2020-09-29 |
13 | ″ | schema:datePublishedReg | 2020-09-29 |
14 | ″ | schema:description | Collapsing solutions in f(R) gravity are restricted due to junction conditions that demand continuity of the Ricci scalar and its normal derivative across the time-like collapsing hypersurface. These are obtained via the method of R-matching, which is ubiquitous in f(R) collapse scenarios. In this paper, we study spherically symmetric collapse with the modification term αR2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha R^2$$\end{document}, and use R-matching to exemplify a class of new solutions. After discussing some mathematical preliminaries by which we obtain an algebraic relation between the shear and the anisotropy in these theories, we consider two metric ansatzes. In the first, the collapsing metric is considered to be a separable function of the co-moving radius and time, and the collapse is shear-free, and in the second, a non-separable interior solution is considered, that represents gravitational collapse with non-zero shear viscosity. We arrive at novel solutions that indicate the formation of black holes or locally naked singularities, while obeying all the necessary energy conditions. The separable case allows for a simple analytic expression of the energy-momentum tensor, that indicates the positivity of the pressures throughout collapse, and is further used to study the heat flux evolution of the collapsing matter, whose analytic solutions are presented under certain approximations. These clearly highlight the role of modified gravity in the examples that we consider. |
15 | ″ | schema:genre | article |
16 | ″ | schema:inLanguage | en |
17 | ″ | schema:isAccessibleForFree | true |
18 | ″ | schema:isPartOf | N1a99438d755f40f9819817a5b3099bc1 |
19 | ″ | ″ | Nf8da9c5ddb9d4a7fa3235c41d75a99fe |
20 | ″ | ″ | sg:journal.1049394 |
21 | ″ | schema:keywords | R matching |
22 | ″ | ″ | Ricci scalar |
23 | ″ | ″ | algebraic relations |
24 | ″ | ″ | analytic expressions |
25 | ″ | ″ | analytic solution |
26 | ″ | ″ | anisotropy |
27 | ″ | ″ | ansatz |
28 | ″ | ″ | approximation |
29 | ″ | ″ | black holes |
30 | ″ | ″ | cases |
31 | ″ | ″ | certain approximations |
32 | ″ | ″ | class |
33 | ″ | ″ | collapse |
34 | ″ | ″ | conditions |
35 | ″ | ″ | continuity |
36 | ″ | ″ | derivatives |
37 | ″ | ″ | energy conditions |
38 | ″ | ″ | energy-momentum tensor |
39 | ″ | ″ | evolution |
40 | ″ | ″ | example |
41 | ″ | ″ | expression |
42 | ″ | ″ | flux evolution |
43 | ″ | ″ | formation |
44 | ″ | ″ | function |
45 | ″ | ″ | gravitational collapse |
46 | ″ | ″ | gravity |
47 | ″ | ″ | heat flux evolution |
48 | ″ | ″ | holes |
49 | ″ | ″ | hypersurfaces |
50 | ″ | ″ | interior solution |
51 | ″ | ″ | junction conditions |
52 | ″ | ″ | matching |
53 | ″ | ″ | mathematical preliminaries |
54 | ″ | ″ | matter |
55 | ″ | ″ | method |
56 | ″ | ″ | metric ansatz |
57 | ″ | ″ | metrics |
58 | ″ | ″ | modification term |
59 | ″ | ″ | naked singularity |
60 | ″ | ″ | necessary energy condition |
61 | ″ | ″ | new solutions |
62 | ″ | ″ | normal derivative |
63 | ″ | ″ | novel solution |
64 | ″ | ″ | paper |
65 | ″ | ″ | positivity |
66 | ″ | ″ | preliminaries |
67 | ″ | ″ | pressure |
68 | ″ | ″ | radius |
69 | ″ | ″ | relation |
70 | ″ | ″ | role |
71 | ″ | ″ | scalar |
72 | ″ | ″ | scenarios |
73 | ″ | ″ | separable case |
74 | ″ | ″ | separable functions |
75 | ″ | ″ | shear |
76 | ″ | ″ | shear viscosity |
77 | ″ | ″ | simple analytic expression |
78 | ″ | ″ | singularity |
79 | ″ | ″ | solution |
80 | ″ | ″ | symmetric collapse |
81 | ″ | ″ | tensor |
82 | ″ | ″ | terms |
83 | ″ | ″ | theory |
84 | ″ | ″ | time |
85 | ″ | ″ | viscosity |
86 | ″ | schema:name | Collapse in f(R) gravity and the method of R matching |
87 | ″ | schema:pagination | 902 |
88 | ″ | schema:productId | Ndbe75afd693f435793d9c197572f87cc |
89 | ″ | ″ | Ne39d298f34884393b7b38b056eed3fe5 |
90 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1131297926 |
91 | ″ | ″ | https://doi.org/10.1140/epjc/s10052-020-08459-w |
92 | ″ | schema:sdDatePublished | 2022-05-20T07:36 |
93 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
94 | ″ | schema:sdPublisher | N5da1cbe62d804bb5a4b347c0d67086eb |
95 | ″ | schema:url | https://doi.org/10.1140/epjc/s10052-020-08459-w |
96 | ″ | sgo:license | sg:explorer/license/ |
97 | ″ | sgo:sdDataset | articles |
98 | ″ | rdf:type | schema:ScholarlyArticle |
99 | N1a99438d755f40f9819817a5b3099bc1 | schema:volumeNumber | 80 |
100 | ″ | rdf:type | schema:PublicationVolume |
101 | N53a4a77d993f46e7990974304162f1ad | rdf:first | sg:person.01044632674.34 |
102 | ″ | rdf:rest | Nffa1f5033d5a4a20a06104473c0d8a45 |
103 | N5da1cbe62d804bb5a4b347c0d67086eb | schema:name | Springer Nature - SN SciGraph project |
104 | ″ | rdf:type | schema:Organization |
105 | N75b1cca74ff74f07835315e613bcbe66 | rdf:first | sg:person.016541040353.45 |
106 | ″ | rdf:rest | N53a4a77d993f46e7990974304162f1ad |
107 | Nceed501f86294841b30dc9dbb53c035d | rdf:first | sg:person.07651506543.38 |
108 | ″ | rdf:rest | N75b1cca74ff74f07835315e613bcbe66 |
109 | Ndbe75afd693f435793d9c197572f87cc | schema:name | doi |
110 | ″ | schema:value | 10.1140/epjc/s10052-020-08459-w |
111 | ″ | rdf:type | schema:PropertyValue |
112 | Ne39d298f34884393b7b38b056eed3fe5 | schema:name | dimensions_id |
113 | ″ | schema:value | pub.1131297926 |
114 | ″ | rdf:type | schema:PropertyValue |
115 | Nf8da9c5ddb9d4a7fa3235c41d75a99fe | schema:issueNumber | 9 |
116 | ″ | rdf:type | schema:PublicationIssue |
117 | Nffa1f5033d5a4a20a06104473c0d8a45 | rdf:first | sg:person.01217741634.65 |
118 | ″ | rdf:rest | rdf:nil |
119 | anzsrc-for:02 | schema:inDefinedTermSet | anzsrc-for: |
120 | ″ | schema:name | Physical Sciences |
121 | ″ | rdf:type | schema:DefinedTerm |
122 | anzsrc-for:0202 | schema:inDefinedTermSet | anzsrc-for: |
123 | ″ | schema:name | Atomic, Molecular, Nuclear, Particle and Plasma Physics |
124 | ″ | rdf:type | schema:DefinedTerm |
125 | anzsrc-for:0206 | schema:inDefinedTermSet | anzsrc-for: |
126 | ″ | schema:name | Quantum Physics |
127 | ″ | rdf:type | schema:DefinedTerm |
128 | sg:journal.1049394 | schema:issn | 1434-6044 |
129 | ″ | ″ | 1434-6052 |
130 | ″ | schema:name | European Physical Journal C |
131 | ″ | schema:publisher | Springer Nature |
132 | ″ | rdf:type | schema:Periodical |
133 | sg:person.01044632674.34 | schema:affiliation | grid-institutes:grid.417965.8 |
134 | ″ | schema:familyName | Pal |
135 | ″ | schema:givenName | Kuntal |
136 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044632674.34 |
137 | ″ | rdf:type | schema:Person |
138 | sg:person.01217741634.65 | schema:affiliation | grid-institutes:grid.417965.8 |
139 | ″ | schema:familyName | Sarkar |
140 | ″ | schema:givenName | Tapobrata |
141 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217741634.65 |
142 | ″ | rdf:type | schema:Person |
143 | sg:person.016541040353.45 | schema:affiliation | grid-institutes:grid.417965.8 |
144 | ″ | schema:familyName | Pal |
145 | ″ | schema:givenName | Kunal |
146 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016541040353.45 |
147 | ″ | rdf:type | schema:Person |
148 | sg:person.07651506543.38 | schema:affiliation | grid-institutes:grid.417965.8 |
149 | ″ | schema:familyName | Chowdhury |
150 | ″ | schema:givenName | Sandip |
151 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07651506543.38 |
152 | ″ | rdf:type | schema:Person |
153 | sg:pub.10.1007/bf02105423 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1040792426 |
154 | ″ | ″ | https://doi.org/10.1007/bf02105423 |
155 | ″ | rdf:type | schema:CreativeWork |
156 | sg:pub.10.1007/s10714-008-0622-8 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1012013307 |
157 | ″ | ″ | https://doi.org/10.1007/s10714-008-0622-8 |
158 | ″ | rdf:type | schema:CreativeWork |
159 | sg:pub.10.1007/s10714-010-0931-6 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1034300263 |
160 | ″ | ″ | https://doi.org/10.1007/s10714-010-0931-6 |
161 | ″ | rdf:type | schema:CreativeWork |
162 | sg:pub.10.1007/s10714-016-2045-2 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1052093215 |
163 | ″ | ″ | https://doi.org/10.1007/s10714-016-2045-2 |
164 | ″ | rdf:type | schema:CreativeWork |
165 | sg:pub.10.1007/s10714-018-2472-3 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1107865323 |
166 | ″ | ″ | https://doi.org/10.1007/s10714-018-2472-3 |
167 | ″ | rdf:type | schema:CreativeWork |
168 | sg:pub.10.1023/a:1018855621348 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1001258110 |
169 | ″ | ″ | https://doi.org/10.1023/a:1018855621348 |
170 | ″ | rdf:type | schema:CreativeWork |
171 | sg:pub.10.12942/lrr-2010-3 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1064758169 |
172 | ″ | ″ | https://doi.org/10.12942/lrr-2010-3 |
173 | ″ | rdf:type | schema:CreativeWork |
174 | grid-institutes:grid.417965.8 | schema:alternateName | Department of Physics, Indian Institute of Technology, 208016, Kanpur, India |
175 | ″ | schema:name | Department of Physics, Indian Institute of Technology, 208016, Kanpur, India |
176 | ″ | rdf:type | schema:Organization |