Polyethylene naphthalate film as a wavelength shifter in liquid argon detectors View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

M. Kuźniak, B. Broerman, T. Pollmann, G. R. Araujo

ABSTRACT

Liquid argon-based scintillation detectors are important for dark matter searches and neutrino physics. Argon scintillation light is in the vacuum ultraviolet region, making it hard to be detected by conventional means. Polyethylene naphthalate (PEN), an optically transparent thermoplastic polyester commercially available as large area sheets or rolls, is proposed as an alternative wavelength shifter to the commonly-used tetraphenyl butadiene (TPB). By combining the existing literature data and spectrometer measurements relative to TPB, we conclude that the fluorescence yield and timing of both materials may be very close. The evidence collected suggests that PEN is a suitable replacement for TPB in liquid argon neutrino detectors, and is also a promising candidate for dark matter detectors. Advantages of PEN are discussed in the context of scaling-up existing technologies to the next generation of very large ktonne-scale detectors. Its simplicity has a potential to facilitate such scale-ups, revolutionizing the field. More... »

PAGES

291

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1140/epjc/s10052-019-6810-8

DOI

http://dx.doi.org/10.1140/epjc/s10052-019-6810-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113145807


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Queen's University", 
          "id": "https://www.grid.ac/institutes/grid.410356.5", 
          "name": [
            "Department of Physics, Carleton University, K1S 5B6, Ottawa, ON, Canada", 
            "Department of Physics, Engineering Physics, and Astronomy, Queen\u2019s University, K7L 3N6, Kingston, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ku\u017aniak", 
        "givenName": "M.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Queen's University", 
          "id": "https://www.grid.ac/institutes/grid.410356.5", 
          "name": [
            "Department of Physics, Engineering Physics, and Astronomy, Queen\u2019s University, K7L 3N6, Kingston, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Broerman", 
        "givenName": "B.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University Munich", 
          "id": "https://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Department of Physics, Technische Universit\u00e4t M\u00fcnchen, 80333, Munich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pollmann", 
        "givenName": "T.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University Munich", 
          "id": "https://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Department of Physics, Technische Universit\u00e4t M\u00fcnchen, 80333, Munich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Araujo", 
        "givenName": "G. R.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.nima.2011.01.045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000052700"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tsf.2016.01.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009754988"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0168-583x(96)00318-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016757606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nima.2016.06.059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028091564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nima.2016.06.059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028091564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nima.2016.06.059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028091564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-6596/308/1/012005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031759081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.astropartphys.2009.11.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036372231"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-583x(97)00409-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037465110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1748-0221/10/09/p09009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039168551"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.phpro.2014.12.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040021907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-6596/308/1/012020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040541775"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1748-0221/8/09/p09006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041155812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physletb.2015.03.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041928510"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physletb.2015.03.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041928510"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-583x(02)01586-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042084220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-583x(02)01586-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042084220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/app.26085", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048910597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/app.26085", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048910597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3727/30/2/004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053711180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1748-0221/11/02/c02018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059170955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1748-0221/8/09/c09011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059173251"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tns.2012.2183385", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061736573"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.287.5462.2451", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062568951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/91/62002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064233269"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/91/62002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064233269"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/95/22001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064233610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ao.12.000087", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065089996"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1748-0221/12/02/p02017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083929492"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1748-0221/12/04/p04017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084947742"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ceidp.2001.963512", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094721562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.5007652", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095928061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.5019011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100160676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjc/s10052-017-5499-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100315540", 
          "https://doi.org/10.1140/epjc/s10052-017-5499-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjp/i2018-11973-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103257512", 
          "https://doi.org/10.1140/epjp/i2018-11973-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjp/i2018-11973-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103257512", 
          "https://doi.org/10.1140/epjp/i2018-11973-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjp/i2018-11973-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103257512", 
          "https://doi.org/10.1140/epjp/i2018-11973-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1748-0221/13/04/c04005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103306073"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjc/s10052-018-5807-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103604239", 
          "https://doi.org/10.1140/epjc/s10052-018-5807-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjc/s10052-018-5807-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103604239", 
          "https://doi.org/10.1140/epjc/s10052-018-5807-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.astropartphys.2018.09.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110374601"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "Liquid argon-based scintillation detectors are important for dark matter searches and neutrino physics. Argon scintillation light is in the vacuum ultraviolet region, making it hard to be detected by conventional means. Polyethylene naphthalate (PEN), an optically transparent thermoplastic polyester commercially available as large area sheets or rolls, is proposed as an alternative wavelength shifter to the commonly-used tetraphenyl butadiene (TPB). By combining the existing literature data and spectrometer measurements relative to TPB, we conclude that the fluorescence yield and timing of both materials may be very close. The evidence collected suggests that PEN is a suitable replacement for TPB in liquid argon neutrino detectors, and is also a promising candidate for dark matter detectors. Advantages of PEN are discussed in the context of scaling-up existing technologies to the next generation of very large ktonne-scale detectors. Its simplicity has a potential to facilitate such scale-ups, revolutionizing the field.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1140/epjc/s10052-019-6810-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1049394", 
        "issn": [
          "1434-6044", 
          "1434-6052"
        ], 
        "name": "The European Physical Journal C", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "79"
      }
    ], 
    "name": "Polyethylene naphthalate film as a wavelength shifter in liquid argon detectors", 
    "pagination": "291", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "398ed378f53d007e22a58b73f1735d06b5464a25b65036ea4e08812906d66d7e"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1140/epjc/s10052-019-6810-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113145807"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1140/epjc/s10052-019-6810-8", 
      "https://app.dimensions.ai/details/publication/pub.1113145807"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46775_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1140%2Fepjc%2Fs10052-019-6810-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epjc/s10052-019-6810-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epjc/s10052-019-6810-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epjc/s10052-019-6810-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epjc/s10052-019-6810-8'


 

This table displays all metadata directly associated to this object as RDF triples.

181 TRIPLES      21 PREDICATES      59 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1140/epjc/s10052-019-6810-8 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author Na257f140c4174c6e94efd5592836b811
4 schema:citation sg:pub.10.1140/epjc/s10052-017-5499-9
5 sg:pub.10.1140/epjc/s10052-018-5807-z
6 sg:pub.10.1140/epjp/i2018-11973-4
7 https://doi.org/10.1002/app.26085
8 https://doi.org/10.1016/0168-583x(96)00318-7
9 https://doi.org/10.1016/j.astropartphys.2009.11.004
10 https://doi.org/10.1016/j.astropartphys.2018.09.006
11 https://doi.org/10.1016/j.nima.2011.01.045
12 https://doi.org/10.1016/j.nima.2016.06.059
13 https://doi.org/10.1016/j.phpro.2014.12.024
14 https://doi.org/10.1016/j.physletb.2015.03.012
15 https://doi.org/10.1016/j.tsf.2016.01.006
16 https://doi.org/10.1016/s0168-583x(02)01586-0
17 https://doi.org/10.1016/s0168-583x(97)00409-6
18 https://doi.org/10.1063/1.5007652
19 https://doi.org/10.1063/1.5019011
20 https://doi.org/10.1088/0022-3727/30/2/004
21 https://doi.org/10.1088/1742-6596/308/1/012005
22 https://doi.org/10.1088/1742-6596/308/1/012020
23 https://doi.org/10.1088/1748-0221/10/09/p09009
24 https://doi.org/10.1088/1748-0221/11/02/c02018
25 https://doi.org/10.1088/1748-0221/12/02/p02017
26 https://doi.org/10.1088/1748-0221/12/04/p04017
27 https://doi.org/10.1088/1748-0221/13/04/c04005
28 https://doi.org/10.1088/1748-0221/8/09/c09011
29 https://doi.org/10.1088/1748-0221/8/09/p09006
30 https://doi.org/10.1109/ceidp.2001.963512
31 https://doi.org/10.1109/tns.2012.2183385
32 https://doi.org/10.1126/science.287.5462.2451
33 https://doi.org/10.1209/0295-5075/91/62002
34 https://doi.org/10.1209/0295-5075/95/22001
35 https://doi.org/10.1364/ao.12.000087
36 schema:datePublished 2019-04
37 schema:datePublishedReg 2019-04-01
38 schema:description Liquid argon-based scintillation detectors are important for dark matter searches and neutrino physics. Argon scintillation light is in the vacuum ultraviolet region, making it hard to be detected by conventional means. Polyethylene naphthalate (PEN), an optically transparent thermoplastic polyester commercially available as large area sheets or rolls, is proposed as an alternative wavelength shifter to the commonly-used tetraphenyl butadiene (TPB). By combining the existing literature data and spectrometer measurements relative to TPB, we conclude that the fluorescence yield and timing of both materials may be very close. The evidence collected suggests that PEN is a suitable replacement for TPB in liquid argon neutrino detectors, and is also a promising candidate for dark matter detectors. Advantages of PEN are discussed in the context of scaling-up existing technologies to the next generation of very large ktonne-scale detectors. Its simplicity has a potential to facilitate such scale-ups, revolutionizing the field.
39 schema:genre research_article
40 schema:inLanguage en
41 schema:isAccessibleForFree false
42 schema:isPartOf N3f3d20f4094e4319893dfbaeae3e36ca
43 N72f95d54e13a4a9fba10bbc3263f508e
44 sg:journal.1049394
45 schema:name Polyethylene naphthalate film as a wavelength shifter in liquid argon detectors
46 schema:pagination 291
47 schema:productId N8e63317f0e8b41a0b31ca23c149b2577
48 Nc9fc389c623b467d9d3e794e5ce1c409
49 Ne74dfe872fe0431c8ede999e8377923d
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113145807
51 https://doi.org/10.1140/epjc/s10052-019-6810-8
52 schema:sdDatePublished 2019-04-11T13:35
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher Nd427d552a1e94f63ac90ec50caab2d14
55 schema:url https://link.springer.com/10.1140%2Fepjc%2Fs10052-019-6810-8
56 sgo:license sg:explorer/license/
57 sgo:sdDataset articles
58 rdf:type schema:ScholarlyArticle
59 N25e73571447b41cb858eaf2230f9d7e6 rdf:first N36e6b596e9ba445096705a75bf302998
60 rdf:rest rdf:nil
61 N36e6b596e9ba445096705a75bf302998 schema:affiliation https://www.grid.ac/institutes/grid.6936.a
62 schema:familyName Araujo
63 schema:givenName G. R.
64 rdf:type schema:Person
65 N3f3d20f4094e4319893dfbaeae3e36ca schema:volumeNumber 79
66 rdf:type schema:PublicationVolume
67 N3fd2bf93b78f4bbb9e6d7b36aecd4abb schema:affiliation https://www.grid.ac/institutes/grid.410356.5
68 schema:familyName Broerman
69 schema:givenName B.
70 rdf:type schema:Person
71 N4a387d6b4a6e4cd6a2cc4131ccfae2a4 schema:affiliation https://www.grid.ac/institutes/grid.410356.5
72 schema:familyName Kuźniak
73 schema:givenName M.
74 rdf:type schema:Person
75 N685c323c712441f0a84b3121e433e041 rdf:first N7a5cb432f0ea4845b584cd1cd4976773
76 rdf:rest N25e73571447b41cb858eaf2230f9d7e6
77 N72f95d54e13a4a9fba10bbc3263f508e schema:issueNumber 4
78 rdf:type schema:PublicationIssue
79 N7a5cb432f0ea4845b584cd1cd4976773 schema:affiliation https://www.grid.ac/institutes/grid.6936.a
80 schema:familyName Pollmann
81 schema:givenName T.
82 rdf:type schema:Person
83 N893667fae02b432e91d125798c2c2d18 rdf:first N3fd2bf93b78f4bbb9e6d7b36aecd4abb
84 rdf:rest N685c323c712441f0a84b3121e433e041
85 N8e63317f0e8b41a0b31ca23c149b2577 schema:name readcube_id
86 schema:value 398ed378f53d007e22a58b73f1735d06b5464a25b65036ea4e08812906d66d7e
87 rdf:type schema:PropertyValue
88 Na257f140c4174c6e94efd5592836b811 rdf:first N4a387d6b4a6e4cd6a2cc4131ccfae2a4
89 rdf:rest N893667fae02b432e91d125798c2c2d18
90 Nc9fc389c623b467d9d3e794e5ce1c409 schema:name dimensions_id
91 schema:value pub.1113145807
92 rdf:type schema:PropertyValue
93 Nd427d552a1e94f63ac90ec50caab2d14 schema:name Springer Nature - SN SciGraph project
94 rdf:type schema:Organization
95 Ne74dfe872fe0431c8ede999e8377923d schema:name doi
96 schema:value 10.1140/epjc/s10052-019-6810-8
97 rdf:type schema:PropertyValue
98 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
99 schema:name Physical Sciences
100 rdf:type schema:DefinedTerm
101 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
102 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
103 rdf:type schema:DefinedTerm
104 sg:journal.1049394 schema:issn 1434-6044
105 1434-6052
106 schema:name The European Physical Journal C
107 rdf:type schema:Periodical
108 sg:pub.10.1140/epjc/s10052-017-5499-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100315540
109 https://doi.org/10.1140/epjc/s10052-017-5499-9
110 rdf:type schema:CreativeWork
111 sg:pub.10.1140/epjc/s10052-018-5807-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1103604239
112 https://doi.org/10.1140/epjc/s10052-018-5807-z
113 rdf:type schema:CreativeWork
114 sg:pub.10.1140/epjp/i2018-11973-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103257512
115 https://doi.org/10.1140/epjp/i2018-11973-4
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1002/app.26085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048910597
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/0168-583x(96)00318-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016757606
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.astropartphys.2009.11.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036372231
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.astropartphys.2018.09.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110374601
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.nima.2011.01.045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000052700
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.nima.2016.06.059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028091564
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.phpro.2014.12.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040021907
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.physletb.2015.03.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041928510
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.tsf.2016.01.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009754988
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/s0168-583x(02)01586-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042084220
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/s0168-583x(97)00409-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037465110
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1063/1.5007652 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095928061
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1063/1.5019011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100160676
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1088/0022-3727/30/2/004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053711180
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1088/1742-6596/308/1/012005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031759081
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1088/1742-6596/308/1/012020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040541775
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1088/1748-0221/10/09/p09009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039168551
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1088/1748-0221/11/02/c02018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059170955
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1088/1748-0221/12/02/p02017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083929492
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1088/1748-0221/12/04/p04017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084947742
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1088/1748-0221/13/04/c04005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103306073
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1088/1748-0221/8/09/c09011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059173251
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1088/1748-0221/8/09/p09006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041155812
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1109/ceidp.2001.963512 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094721562
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1109/tns.2012.2183385 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061736573
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1126/science.287.5462.2451 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062568951
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1209/0295-5075/91/62002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064233269
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1209/0295-5075/95/22001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064233610
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1364/ao.12.000087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065089996
174 rdf:type schema:CreativeWork
175 https://www.grid.ac/institutes/grid.410356.5 schema:alternateName Queen's University
176 schema:name Department of Physics, Carleton University, K1S 5B6, Ottawa, ON, Canada
177 Department of Physics, Engineering Physics, and Astronomy, Queen’s University, K7L 3N6, Kingston, ON, Canada
178 rdf:type schema:Organization
179 https://www.grid.ac/institutes/grid.6936.a schema:alternateName Technical University Munich
180 schema:name Department of Physics, Technische Universität München, 80333, Munich, Germany
181 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...