Guiding new physics searches with unsupervised learning View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Andrea De Simone, Thomas Jacques

ABSTRACT

We propose a new scientific application of unsupervised learning techniques to boost our ability to search for new phenomena in data, by detecting discrepancies between two datasets. These could be, for example, a simulated standard-model background, and an observed dataset containing a potential hidden signal of New Physics. We build a statistical test upon a test statistic which measures deviations between two samples, using a Nearest Neighbors approach to estimate the local ratio of the density of points. The test is model-independent and non-parametric, requiring no knowledge of the shape of the underlying distributions, and it does not bin the data, thus retaining full information from the multidimensional feature space. As a proof-of-concept, we apply our method to synthetic Gaussian data, and to a simulated dark matter signal at the Large Hadron Collider. Even in the case where the background can not be simulated accurately enough to claim discovery, the technique is a powerful tool to identify regions of interest for further study. More... »

PAGES

289

Identifiers

URI

http://scigraph.springernature.com/pub.10.1140/epjc/s10052-019-6787-3

DOI

http://dx.doi.org/10.1140/epjc/s10052-019-6787-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113092055


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "INFN Sezione di Trieste", 
          "id": "https://www.grid.ac/institutes/grid.470223.0", 
          "name": [
            "SISSA, Via Bonomea 265, 34136, Trieste, Italy", 
            "INFN Sezione di Trieste, Via Bonomea 265, 34136, Trieste, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "De Simone", 
        "givenName": "Andrea", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "INFN Sezione di Trieste", 
          "id": "https://www.grid.ac/institutes/grid.470223.0", 
          "name": [
            "SISSA, Via Bonomea 265, 34136, Trieste, Italy", 
            "INFN Sezione di Trieste, Via Bonomea 265, 34136, Trieste, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jacques", 
        "givenName": "Thomas", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.cpc.2015.01.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009753448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjc/s10052-016-4208-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015546314", 
          "https://doi.org/10.1140/epjc/s10052-016-4208-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjc/s10052-016-4208-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015546314", 
          "https://doi.org/10.1140/epjc/s10052-016-4208-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-6596/368/1/012032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018943023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjc/s10052-016-4099-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022073057", 
          "https://doi.org/10.1140/epjc/s10052-016-4099-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjc/s10052-016-4099-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022073057", 
          "https://doi.org/10.1140/epjc/s10052-016-4099-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep07(2014)079", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024796629", 
          "https://doi.org/10.1007/jhep07(2014)079"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patrec.2015.10.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025724372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aoms/1177729694", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026070931"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.79.011101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039833667"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.79.011101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039833667"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ascom.2015.06.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044203051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ascom.2015.06.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044203051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ascom.2015.06.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044203051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ascom.2015.06.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044203051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neunet.2011.04.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044944975"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1986.10478337", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058303314"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tit.2005.853314", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061650614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tit.2005.853314", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061650614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1176350835", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064409267"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjc/s10052-017-4814-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085053396", 
          "https://doi.org/10.1140/epjc/s10052-017-4814-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjc/s10052-017-4814-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085053396", 
          "https://doi.org/10.1140/epjc/s10052-017-4814-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep05(2017)145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085710339", 
          "https://doi.org/10.1007/jhep05(2017)145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep10(2017)174", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092421129", 
          "https://doi.org/10.1007/jhep10(2017)174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep11(2017)194", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093063723", 
          "https://doi.org/10.1007/jhep11(2017)194"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9781139035613", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098663456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.97.014021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100728484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.97.014021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100728484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.jctc.7b00916", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100827974"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep02(2018)034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100859192", 
          "https://doi.org/10.1007/jhep02(2018)034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.97.056009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101530876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.97.056009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101530876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/neco_a_01092", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104601564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109705929", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4899-4541-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109705929", 
          "https://doi.org/10.1007/978-1-4899-4541-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4899-4541-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109705929", 
          "https://doi.org/10.1007/978-1-4899-4541-9"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "We propose a new scientific application of unsupervised learning techniques to boost our ability to search for new phenomena in data, by detecting discrepancies between two datasets. These could be, for example, a simulated standard-model background, and an observed dataset containing a potential hidden signal of New Physics. We build a statistical test upon a test statistic which measures deviations between two samples, using a Nearest Neighbors approach to estimate the local ratio of the density of points. The test is model-independent and non-parametric, requiring no knowledge of the shape of the underlying distributions, and it does not bin the data, thus retaining full information from the multidimensional feature space. As a proof-of-concept, we apply our method to synthetic Gaussian data, and to a simulated dark matter signal at the Large Hadron Collider. Even in the case where the background can not be simulated accurately enough to claim discovery, the technique is a powerful tool to identify regions of interest for further study.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1140/epjc/s10052-019-6787-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1049394", 
        "issn": [
          "1434-6044", 
          "1434-6052"
        ], 
        "name": "The European Physical Journal C", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "79"
      }
    ], 
    "name": "Guiding new physics searches with unsupervised learning", 
    "pagination": "289", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3d95fa09f45f3cc5878ced8858b6a04f90436800fbb7216549c9d0ac0f5522ce"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1140/epjc/s10052-019-6787-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113092055"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1140/epjc/s10052-019-6787-3", 
      "https://app.dimensions.ai/details/publication/pub.1113092055"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:23", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000369_0000000369/records_68956_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1140%2Fepjc%2Fs10052-019-6787-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epjc/s10052-019-6787-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epjc/s10052-019-6787-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epjc/s10052-019-6787-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epjc/s10052-019-6787-3'


 

This table displays all metadata directly associated to this object as RDF triples.

150 TRIPLES      21 PREDICATES      52 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1140/epjc/s10052-019-6787-3 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author N6afc1587c48b4fb09069839c71f8a1eb
4 schema:citation sg:pub.10.1007/978-1-4899-4541-9
5 sg:pub.10.1007/jhep02(2018)034
6 sg:pub.10.1007/jhep05(2017)145
7 sg:pub.10.1007/jhep07(2014)079
8 sg:pub.10.1007/jhep10(2017)174
9 sg:pub.10.1007/jhep11(2017)194
10 sg:pub.10.1140/epjc/s10052-016-4099-4
11 sg:pub.10.1140/epjc/s10052-016-4208-4
12 sg:pub.10.1140/epjc/s10052-017-4814-9
13 https://app.dimensions.ai/details/publication/pub.1109705929
14 https://doi.org/10.1016/j.ascom.2015.06.005
15 https://doi.org/10.1016/j.cpc.2015.01.024
16 https://doi.org/10.1016/j.neunet.2011.04.003
17 https://doi.org/10.1016/j.patrec.2015.10.008
18 https://doi.org/10.1017/cbo9781139035613
19 https://doi.org/10.1021/acs.jctc.7b00916
20 https://doi.org/10.1080/01621459.1986.10478337
21 https://doi.org/10.1088/1742-6596/368/1/012032
22 https://doi.org/10.1103/physrevd.79.011101
23 https://doi.org/10.1103/physrevd.97.014021
24 https://doi.org/10.1103/physrevd.97.056009
25 https://doi.org/10.1109/tit.2005.853314
26 https://doi.org/10.1162/neco_a_01092
27 https://doi.org/10.1214/aoms/1177729694
28 https://doi.org/10.1214/aos/1176350835
29 schema:datePublished 2019-04
30 schema:datePublishedReg 2019-04-01
31 schema:description We propose a new scientific application of unsupervised learning techniques to boost our ability to search for new phenomena in data, by detecting discrepancies between two datasets. These could be, for example, a simulated standard-model background, and an observed dataset containing a potential hidden signal of New Physics. We build a statistical test upon a test statistic which measures deviations between two samples, using a Nearest Neighbors approach to estimate the local ratio of the density of points. The test is model-independent and non-parametric, requiring no knowledge of the shape of the underlying distributions, and it does not bin the data, thus retaining full information from the multidimensional feature space. As a proof-of-concept, we apply our method to synthetic Gaussian data, and to a simulated dark matter signal at the Large Hadron Collider. Even in the case where the background can not be simulated accurately enough to claim discovery, the technique is a powerful tool to identify regions of interest for further study.
32 schema:genre research_article
33 schema:inLanguage en
34 schema:isAccessibleForFree false
35 schema:isPartOf N16c47be24f4a47d5928610b70725092e
36 N578bc691a2d74b3b9865d0293bbf47dc
37 sg:journal.1049394
38 schema:name Guiding new physics searches with unsupervised learning
39 schema:pagination 289
40 schema:productId N50e2f979c1ca42f28acea53e4825ba22
41 Ndaf22bb591ca43eaa4ff3e9d9dde8faa
42 Ne00e15ca5b024f288e4f97118c7a56b1
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113092055
44 https://doi.org/10.1140/epjc/s10052-019-6787-3
45 schema:sdDatePublished 2019-04-11T13:23
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher N75146a029f044838aa8c96a2d7fd041b
48 schema:url https://link.springer.com/10.1140%2Fepjc%2Fs10052-019-6787-3
49 sgo:license sg:explorer/license/
50 sgo:sdDataset articles
51 rdf:type schema:ScholarlyArticle
52 N16c47be24f4a47d5928610b70725092e schema:issueNumber 4
53 rdf:type schema:PublicationIssue
54 N50e2f979c1ca42f28acea53e4825ba22 schema:name readcube_id
55 schema:value 3d95fa09f45f3cc5878ced8858b6a04f90436800fbb7216549c9d0ac0f5522ce
56 rdf:type schema:PropertyValue
57 N578bc691a2d74b3b9865d0293bbf47dc schema:volumeNumber 79
58 rdf:type schema:PublicationVolume
59 N5c3e3b4a62534608b3ae22d67e26a9a8 schema:affiliation https://www.grid.ac/institutes/grid.470223.0
60 schema:familyName De Simone
61 schema:givenName Andrea
62 rdf:type schema:Person
63 N6afc1587c48b4fb09069839c71f8a1eb rdf:first N5c3e3b4a62534608b3ae22d67e26a9a8
64 rdf:rest Nb409ab89c57b496d99762a8a93ce414c
65 N75146a029f044838aa8c96a2d7fd041b schema:name Springer Nature - SN SciGraph project
66 rdf:type schema:Organization
67 N860b828090ac4611a1e4b1cddeca7324 schema:affiliation https://www.grid.ac/institutes/grid.470223.0
68 schema:familyName Jacques
69 schema:givenName Thomas
70 rdf:type schema:Person
71 Nb409ab89c57b496d99762a8a93ce414c rdf:first N860b828090ac4611a1e4b1cddeca7324
72 rdf:rest rdf:nil
73 Ndaf22bb591ca43eaa4ff3e9d9dde8faa schema:name doi
74 schema:value 10.1140/epjc/s10052-019-6787-3
75 rdf:type schema:PropertyValue
76 Ne00e15ca5b024f288e4f97118c7a56b1 schema:name dimensions_id
77 schema:value pub.1113092055
78 rdf:type schema:PropertyValue
79 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
80 schema:name Physical Sciences
81 rdf:type schema:DefinedTerm
82 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
83 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
84 rdf:type schema:DefinedTerm
85 sg:journal.1049394 schema:issn 1434-6044
86 1434-6052
87 schema:name The European Physical Journal C
88 rdf:type schema:Periodical
89 sg:pub.10.1007/978-1-4899-4541-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109705929
90 https://doi.org/10.1007/978-1-4899-4541-9
91 rdf:type schema:CreativeWork
92 sg:pub.10.1007/jhep02(2018)034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100859192
93 https://doi.org/10.1007/jhep02(2018)034
94 rdf:type schema:CreativeWork
95 sg:pub.10.1007/jhep05(2017)145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085710339
96 https://doi.org/10.1007/jhep05(2017)145
97 rdf:type schema:CreativeWork
98 sg:pub.10.1007/jhep07(2014)079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024796629
99 https://doi.org/10.1007/jhep07(2014)079
100 rdf:type schema:CreativeWork
101 sg:pub.10.1007/jhep10(2017)174 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092421129
102 https://doi.org/10.1007/jhep10(2017)174
103 rdf:type schema:CreativeWork
104 sg:pub.10.1007/jhep11(2017)194 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093063723
105 https://doi.org/10.1007/jhep11(2017)194
106 rdf:type schema:CreativeWork
107 sg:pub.10.1140/epjc/s10052-016-4099-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022073057
108 https://doi.org/10.1140/epjc/s10052-016-4099-4
109 rdf:type schema:CreativeWork
110 sg:pub.10.1140/epjc/s10052-016-4208-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015546314
111 https://doi.org/10.1140/epjc/s10052-016-4208-4
112 rdf:type schema:CreativeWork
113 sg:pub.10.1140/epjc/s10052-017-4814-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085053396
114 https://doi.org/10.1140/epjc/s10052-017-4814-9
115 rdf:type schema:CreativeWork
116 https://app.dimensions.ai/details/publication/pub.1109705929 schema:CreativeWork
117 https://doi.org/10.1016/j.ascom.2015.06.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044203051
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.cpc.2015.01.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009753448
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.neunet.2011.04.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044944975
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.patrec.2015.10.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025724372
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1017/cbo9781139035613 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098663456
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1021/acs.jctc.7b00916 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100827974
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1080/01621459.1986.10478337 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058303314
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1088/1742-6596/368/1/012032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018943023
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1103/physrevd.79.011101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039833667
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1103/physrevd.97.014021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100728484
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1103/physrevd.97.056009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101530876
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1109/tit.2005.853314 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061650614
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1162/neco_a_01092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104601564
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1214/aoms/1177729694 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026070931
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1214/aos/1176350835 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064409267
146 rdf:type schema:CreativeWork
147 https://www.grid.ac/institutes/grid.470223.0 schema:alternateName INFN Sezione di Trieste
148 schema:name INFN Sezione di Trieste, Via Bonomea 265, 34136, Trieste, Italy
149 SISSA, Via Bonomea 265, 34136, Trieste, Italy
150 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...