Low-redshift constraints on the Hubble constant from the baryon acoustic oscillation “standard rulers” and the gravitational wave “standard sirens” View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02

AUTHORS

Zhe Chang, Qing-Guo Huang, Sai Wang, Zhi-Chao Zhao

ABSTRACT

The multi-messenger observations of GW170817 indicated a new independent measurement of the Hubble constant (H0). We obtain the low-redshift cosmological constraints on H0 by combining this gravitational wave measurement with the observations of distance scales in baryon acoustic oscillations. Using Fisher information matrix, we estimate the projected constraints on H0 from Einstein Telescope. Simulating 103 gravitational-wave standard sirens from binary neutron star coalescences, we find that Einstein Telescope alone can constrain H0 almost as tightly as Planck final data release in the cosmological constant plus cold dark matter model. This constraint can be further improved by combining Einstein Telescope with Dark Energy Spectroscopic Instrument. The Hubble constant tension can thus be checked by observing the standard sirens with Einstein Telescope in the future. More... »

PAGES

177

References to SciGraph publications

  • 2009-12. Physics, Astrophysics and Cosmology with Gravitational Waves in LIVING REVIEWS IN RELATIVITY
  • 2015-09. An accurate determination of the Hubble constant from baryon acoustic oscillation datasets in SCIENCE CHINA PHYSICS, MECHANICS & ASTRONOMY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1140/epjc/s10052-019-6664-0

    DOI

    http://dx.doi.org/10.1140/epjc/s10052-019-6664-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112396074


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0201", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Astronomical and Space Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Chinese Academy of Sciences", 
              "id": "https://www.grid.ac/institutes/grid.410726.6", 
              "name": [
                "Institute of High Energy Physics, Chinese Academy of Sciences, 100049, Beijing, China", 
                "School of Physical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chang", 
            "givenName": "Zhe", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Hunan Normal University", 
              "id": "https://www.grid.ac/institutes/grid.411427.5", 
              "name": [
                "School of Physical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China", 
                "CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, 100190, Beijing, China", 
                "Center for Gravitation and Cosmology, College of Physical Science and Technology, Yangzhou University, 225009, Yangzhou, China", 
                "Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, 410081, Changsha, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Huang", 
            "givenName": "Qing-Guo", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Chinese University of Hong Kong", 
              "id": "https://www.grid.ac/institutes/grid.10784.3a", 
              "name": [
                "Department of Physics, The Chinese University of Hong Kong, Shatin, N.T., 999077, Hong Kong, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Sai", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Chinese Academy of Sciences", 
              "id": "https://www.grid.ac/institutes/grid.410726.6", 
              "name": [
                "Institute of High Energy Physics, Chinese Academy of Sciences, 100049, Beijing, China", 
                "School of Physical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhao", 
            "givenName": "Zhi-Chao", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1093/mnras/stv154", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013751723"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.83.023005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016458168"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.83.023005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016458168"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.47.2198", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020512640"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.47.2198", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020512640"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-2966.2011.19250.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020807203"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.52.848", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022224633"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.52.848", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022224633"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.83.084045", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023118502"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.83.084045", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023118502"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0264-9381/27/21/215006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024945021"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0264-9381/27/21/215006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024945021"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0370-2693(01)00642-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026764786"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.68.121501", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026966103"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.68.121501", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026966103"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.66.103511", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029100089"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.66.103511", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029100089"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.63.064038", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031381087"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.63.064038", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031381087"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.90.091301", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031465424"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.90.091301", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031465424"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0264-9381/27/19/194002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032108191"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0264-9381/27/19/194002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032108191"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.12942/lrr-2009-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035563169", 
              "https://doi.org/10.12942/lrr-2009-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.69.064018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035948238"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.69.064018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035948238"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0264-9381/21/5/021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036305067"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0370-2693(02)01622-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037150430"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.71.024004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038335793"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.71.024004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038335793"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11433-015-5684-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041310188", 
              "https://doi.org/10.1007/s11433-015-5684-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.74.063006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046510418"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.74.063006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046510418"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.86.122001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046748786"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.86.122001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046748786"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.69.124007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049046224"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.69.124007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049046224"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.93.091101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050633325"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.93.091101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050633325"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.49.2658", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051063049"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.49.2658", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051063049"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/305424", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058612946"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/mnras/stu278", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059915431"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s0218271801000822", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062967387"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-02", 
        "datePublishedReg": "2019-02-01", 
        "description": "The multi-messenger observations of GW170817 indicated a new independent measurement of the Hubble constant (H0). We obtain the low-redshift cosmological constraints on H0 by combining this gravitational wave measurement with the observations of distance scales in baryon acoustic oscillations. Using Fisher information matrix, we estimate the projected constraints on H0 from Einstein Telescope. Simulating 103 gravitational-wave standard sirens from binary neutron star coalescences, we find that Einstein Telescope alone can constrain H0 almost as tightly as Planck final data release in the cosmological constant plus cold dark matter model. This constraint can be further improved by combining Einstein Telescope with Dark Energy Spectroscopic Instrument. The Hubble constant tension can thus be checked by observing the standard sirens with Einstein Telescope in the future.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1140/epjc/s10052-019-6664-0", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1049394", 
            "issn": [
              "1434-6044", 
              "1434-6052"
            ], 
            "name": "The European Physical Journal C", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "79"
          }
        ], 
        "name": "Low-redshift constraints on the Hubble constant from the baryon acoustic oscillation \u201cstandard rulers\u201d and the gravitational wave \u201cstandard sirens\u201d", 
        "pagination": "177", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "c5283c00f8c5a134c225c7862d63bafb3fe891317f8cb000a034e65cd17da9c6"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1140/epjc/s10052-019-6664-0"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112396074"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1140/epjc/s10052-019-6664-0", 
          "https://app.dimensions.ai/details/publication/pub.1112396074"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T11:37", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000358_0000000358/records_127427_00000011.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1140%2Fepjc%2Fs10052-019-6664-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epjc/s10052-019-6664-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epjc/s10052-019-6664-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epjc/s10052-019-6664-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epjc/s10052-019-6664-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    171 TRIPLES      21 PREDICATES      54 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1140/epjc/s10052-019-6664-0 schema:about anzsrc-for:02
    2 anzsrc-for:0201
    3 schema:author Naf5a555d4f1e4aca8293ebccc0019ada
    4 schema:citation sg:pub.10.1007/s11433-015-5684-5
    5 sg:pub.10.12942/lrr-2009-2
    6 https://doi.org/10.1016/s0370-2693(01)00642-6
    7 https://doi.org/10.1016/s0370-2693(02)01622-2
    8 https://doi.org/10.1086/305424
    9 https://doi.org/10.1088/0264-9381/21/5/021
    10 https://doi.org/10.1088/0264-9381/27/19/194002
    11 https://doi.org/10.1088/0264-9381/27/21/215006
    12 https://doi.org/10.1093/mnras/stu278
    13 https://doi.org/10.1093/mnras/stv154
    14 https://doi.org/10.1103/physrevd.47.2198
    15 https://doi.org/10.1103/physrevd.49.2658
    16 https://doi.org/10.1103/physrevd.52.848
    17 https://doi.org/10.1103/physrevd.63.064038
    18 https://doi.org/10.1103/physrevd.66.103511
    19 https://doi.org/10.1103/physrevd.68.121501
    20 https://doi.org/10.1103/physrevd.69.064018
    21 https://doi.org/10.1103/physrevd.69.124007
    22 https://doi.org/10.1103/physrevd.71.024004
    23 https://doi.org/10.1103/physrevd.74.063006
    24 https://doi.org/10.1103/physrevd.83.023005
    25 https://doi.org/10.1103/physrevd.83.084045
    26 https://doi.org/10.1103/physrevd.86.122001
    27 https://doi.org/10.1103/physrevlett.90.091301
    28 https://doi.org/10.1103/physrevlett.93.091101
    29 https://doi.org/10.1111/j.1365-2966.2011.19250.x
    30 https://doi.org/10.1142/s0218271801000822
    31 schema:datePublished 2019-02
    32 schema:datePublishedReg 2019-02-01
    33 schema:description The multi-messenger observations of GW170817 indicated a new independent measurement of the Hubble constant (H0). We obtain the low-redshift cosmological constraints on H0 by combining this gravitational wave measurement with the observations of distance scales in baryon acoustic oscillations. Using Fisher information matrix, we estimate the projected constraints on H0 from Einstein Telescope. Simulating 103 gravitational-wave standard sirens from binary neutron star coalescences, we find that Einstein Telescope alone can constrain H0 almost as tightly as Planck final data release in the cosmological constant plus cold dark matter model. This constraint can be further improved by combining Einstein Telescope with Dark Energy Spectroscopic Instrument. The Hubble constant tension can thus be checked by observing the standard sirens with Einstein Telescope in the future.
    34 schema:genre research_article
    35 schema:inLanguage en
    36 schema:isAccessibleForFree false
    37 schema:isPartOf N0631db21454a40cfb3bdc44016139fb5
    38 N404b697ee82d4723b135f62672560879
    39 sg:journal.1049394
    40 schema:name Low-redshift constraints on the Hubble constant from the baryon acoustic oscillation “standard rulers” and the gravitational wave “standard sirens”
    41 schema:pagination 177
    42 schema:productId Na75dee2ad23241579af210c5c6025faf
    43 Ne22d0f491adb46619c36abad1bbe44e9
    44 Nee77174e72054c0d80be7a9074b9a538
    45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112396074
    46 https://doi.org/10.1140/epjc/s10052-019-6664-0
    47 schema:sdDatePublished 2019-04-11T11:37
    48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    49 schema:sdPublisher Na320b6dd6b7a44959ee9430339151e83
    50 schema:url https://link.springer.com/10.1140%2Fepjc%2Fs10052-019-6664-0
    51 sgo:license sg:explorer/license/
    52 sgo:sdDataset articles
    53 rdf:type schema:ScholarlyArticle
    54 N044aea0f55594f628ca1ba0e24e1e749 rdf:first N79fc47249a93407aa89dabf457b64650
    55 rdf:rest N7cf568a958df4fa9aca23e9c18e8c9b4
    56 N0631db21454a40cfb3bdc44016139fb5 schema:issueNumber 2
    57 rdf:type schema:PublicationIssue
    58 N404b697ee82d4723b135f62672560879 schema:volumeNumber 79
    59 rdf:type schema:PublicationVolume
    60 N60fc58549b304a1cb000cc3b9a15e17f rdf:first N7709fabcddce43c3b3bcf90707c1cc83
    61 rdf:rest rdf:nil
    62 N7709fabcddce43c3b3bcf90707c1cc83 schema:affiliation https://www.grid.ac/institutes/grid.410726.6
    63 schema:familyName Zhao
    64 schema:givenName Zhi-Chao
    65 rdf:type schema:Person
    66 N79fc47249a93407aa89dabf457b64650 schema:affiliation https://www.grid.ac/institutes/grid.411427.5
    67 schema:familyName Huang
    68 schema:givenName Qing-Guo
    69 rdf:type schema:Person
    70 N7cf568a958df4fa9aca23e9c18e8c9b4 rdf:first Nae269587f4aa4c58b8a36e862e3b23b7
    71 rdf:rest N60fc58549b304a1cb000cc3b9a15e17f
    72 Na320b6dd6b7a44959ee9430339151e83 schema:name Springer Nature - SN SciGraph project
    73 rdf:type schema:Organization
    74 Na75dee2ad23241579af210c5c6025faf schema:name readcube_id
    75 schema:value c5283c00f8c5a134c225c7862d63bafb3fe891317f8cb000a034e65cd17da9c6
    76 rdf:type schema:PropertyValue
    77 Nae269587f4aa4c58b8a36e862e3b23b7 schema:affiliation https://www.grid.ac/institutes/grid.10784.3a
    78 schema:familyName Wang
    79 schema:givenName Sai
    80 rdf:type schema:Person
    81 Naf5a555d4f1e4aca8293ebccc0019ada rdf:first Nb7dcbfceef3246a29e01ffdefef32b1f
    82 rdf:rest N044aea0f55594f628ca1ba0e24e1e749
    83 Nb7dcbfceef3246a29e01ffdefef32b1f schema:affiliation https://www.grid.ac/institutes/grid.410726.6
    84 schema:familyName Chang
    85 schema:givenName Zhe
    86 rdf:type schema:Person
    87 Ne22d0f491adb46619c36abad1bbe44e9 schema:name doi
    88 schema:value 10.1140/epjc/s10052-019-6664-0
    89 rdf:type schema:PropertyValue
    90 Nee77174e72054c0d80be7a9074b9a538 schema:name dimensions_id
    91 schema:value pub.1112396074
    92 rdf:type schema:PropertyValue
    93 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    94 schema:name Physical Sciences
    95 rdf:type schema:DefinedTerm
    96 anzsrc-for:0201 schema:inDefinedTermSet anzsrc-for:
    97 schema:name Astronomical and Space Sciences
    98 rdf:type schema:DefinedTerm
    99 sg:journal.1049394 schema:issn 1434-6044
    100 1434-6052
    101 schema:name The European Physical Journal C
    102 rdf:type schema:Periodical
    103 sg:pub.10.1007/s11433-015-5684-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041310188
    104 https://doi.org/10.1007/s11433-015-5684-5
    105 rdf:type schema:CreativeWork
    106 sg:pub.10.12942/lrr-2009-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035563169
    107 https://doi.org/10.12942/lrr-2009-2
    108 rdf:type schema:CreativeWork
    109 https://doi.org/10.1016/s0370-2693(01)00642-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026764786
    110 rdf:type schema:CreativeWork
    111 https://doi.org/10.1016/s0370-2693(02)01622-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037150430
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.1086/305424 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058612946
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1088/0264-9381/21/5/021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036305067
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1088/0264-9381/27/19/194002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032108191
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1088/0264-9381/27/21/215006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024945021
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1093/mnras/stu278 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059915431
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1093/mnras/stv154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013751723
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1103/physrevd.47.2198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020512640
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1103/physrevd.49.2658 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051063049
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1103/physrevd.52.848 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022224633
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1103/physrevd.63.064038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031381087
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1103/physrevd.66.103511 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029100089
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1103/physrevd.68.121501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026966103
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1103/physrevd.69.064018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035948238
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1103/physrevd.69.124007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049046224
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1103/physrevd.71.024004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038335793
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1103/physrevd.74.063006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046510418
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1103/physrevd.83.023005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016458168
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1103/physrevd.83.084045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023118502
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1103/physrevd.86.122001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046748786
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1103/physrevlett.90.091301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031465424
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1103/physrevlett.93.091101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050633325
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1111/j.1365-2966.2011.19250.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1020807203
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1142/s0218271801000822 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062967387
    158 rdf:type schema:CreativeWork
    159 https://www.grid.ac/institutes/grid.10784.3a schema:alternateName Chinese University of Hong Kong
    160 schema:name Department of Physics, The Chinese University of Hong Kong, Shatin, N.T., 999077, Hong Kong, China
    161 rdf:type schema:Organization
    162 https://www.grid.ac/institutes/grid.410726.6 schema:alternateName University of Chinese Academy of Sciences
    163 schema:name Institute of High Energy Physics, Chinese Academy of Sciences, 100049, Beijing, China
    164 School of Physical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
    165 rdf:type schema:Organization
    166 https://www.grid.ac/institutes/grid.411427.5 schema:alternateName Hunan Normal University
    167 schema:name CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, 100190, Beijing, China
    168 Center for Gravitation and Cosmology, College of Physical Science and Technology, Yangzhou University, 225009, Yangzhou, China
    169 School of Physical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
    170 Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, 410081, Changsha, China
    171 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...