Principles and symmetries of complexity in quantum field theory View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02

AUTHORS

Run-Qiu Yang, Yu-Sen An, Chao Niu, Cheng-Yong Zhang, Keun-Young Kim

ABSTRACT

Based on general and minimal properties of the discrete circuit complexity, we define the complexity in continuous systems in a geometrical way. We first show that the Finsler metric naturally emerges in the geometry of the complexity in continuous systems. Due to fundamental symmetries of quantum field theories, the Finsler metric is more constrained and consequently, the complexity of SU(n) operators is uniquely determined as a length of a geodesic in the Finsler geometry. Our Finsler metric is bi-invariant contrary to the right-invariance of discrete qubit systems. We clarify why the bi-invariance is relevant in quantum field theoretic systems. After comparing our results with discrete qubit systems we show most results in k-local right-invariant metric can also appear in our framework. Based on the bi-invariance of our formalism, we propose a new interpretation for the Schrödinger’s equation in isolated systems – the quantum state evolves by the process of minimizing “computational cost”. More... »

PAGES

109

Identifiers

URI

http://scigraph.springernature.com/pub.10.1140/epjc/s10052-019-6600-3

DOI

http://dx.doi.org/10.1140/epjc/s10052-019-6600-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111911112


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Korea Institute for Advanced Study", 
          "id": "https://www.grid.ac/institutes/grid.249961.1", 
          "name": [
            "Quantum Universe Center, Korea Institute for Advanced Study, 130-722, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Run-Qiu", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Chinese Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.410726.6", 
          "name": [
            "Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Science, 100190, Beijing, China", 
            "School of physical Science, University of Chinese Academy of Science, 100049, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "An", 
        "givenName": "Yu-Sen", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jinan University", 
          "id": "https://www.grid.ac/institutes/grid.258164.c", 
          "name": [
            "Department of Physics and Siyuan Laboratory, Jinan University, 510632, Guangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Niu", 
        "givenName": "Chao", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fudan University", 
          "id": "https://www.grid.ac/institutes/grid.8547.e", 
          "name": [
            "Department of Physics and Center for Field Theory and Particle Physics, Fudan University, 200433, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Cheng-Yong", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Gwangju Institute of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.61221.36", 
          "name": [
            "School of Physics and Chemistry, Gwangju Institute of Science and Technology, 61005, Gwangju, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Keun-Young", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevlett.96.181602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002119197"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.181602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002119197"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prop.201500093", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002366392"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1002559558", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-1268-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002559558", 
          "https://doi.org/10.1007/978-1-4612-1268-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-1268-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002559558", 
          "https://doi.org/10.1007/978-1-4612-1268-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/2251-7456-7-37", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004954237", 
          "https://doi.org/10.1186/2251-7456-7-37"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.90.126007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008368776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.90.126007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008368776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prop.201500095", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021945615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-009-5329-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026239194", 
          "https://doi.org/10.1007/978-94-009-5329-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-009-5329-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026239194", 
          "https://doi.org/10.1007/978-94-009-5329-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep11(2016)129", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027977595", 
          "https://doi.org/10.1007/jhep11(2016)129"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep11(2016)129", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027977595", 
          "https://doi.org/10.1007/jhep11(2016)129"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep09(2016)161", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037732402", 
          "https://doi.org/10.1007/jhep09(2016)161"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep09(2016)161", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037732402", 
          "https://doi.org/10.1007/jhep09(2016)161"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.115.200401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038416947"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.115.200401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038416947"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.115.180405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039091233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.115.180405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039091233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4614-4244-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040504388", 
          "https://doi.org/10.1007/978-1-4614-4244-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4614-4244-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040504388", 
          "https://doi.org/10.1007/978-1-4614-4244-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep01(2017)062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051310133", 
          "https://doi.org/10.1007/jhep01(2017)062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep01(2017)062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051310133", 
          "https://doi.org/10.1007/jhep01(2017)062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.59.195", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060451481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.59.195", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060451481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.92.126009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060711455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.92.126009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060711455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.94.084046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060714253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.94.084046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060714253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.115.171602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060764286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.115.171602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060764286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.116.191301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060765530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.116.191301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060765530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep03(2017)118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084017795", 
          "https://doi.org/10.1007/jhep03(2017)118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep03(2017)119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084017796", 
          "https://doi.org/10.1007/jhep03(2017)119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1361-6382/aa6925", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084172272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.119.071602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091274102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.119.071602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091274102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep09(2017)042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091600795", 
          "https://doi.org/10.1007/jhep09(2017)042"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep10(2017)107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092261099", 
          "https://doi.org/10.1007/jhep10(2017)107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep11(2017)097", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092749732", 
          "https://doi.org/10.1007/jhep11(2017)097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep11(2017)188", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093061184", 
          "https://doi.org/10.1007/jhep11(2017)188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9780898717778", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098556566"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511976667", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098774954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep02(2018)082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101056499", 
          "https://doi.org/10.1007/jhep02(2018)082"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02", 
    "datePublishedReg": "2019-02-01", 
    "description": "Based on general and minimal properties of the discrete circuit complexity, we define the complexity in continuous systems in a geometrical way. We first show that the Finsler metric naturally emerges in the geometry of the complexity in continuous systems. Due to fundamental symmetries of quantum field theories, the Finsler metric is more constrained and consequently, the complexity of SU(n) operators is uniquely determined as a length of a geodesic in the Finsler geometry. Our Finsler metric is bi-invariant contrary to the right-invariance of discrete qubit systems. We clarify why the bi-invariance is relevant in quantum field theoretic systems. After comparing our results with discrete qubit systems we show most results in k-local right-invariant metric can also appear in our framework. Based on the bi-invariance of our formalism, we propose a new interpretation for the Schr\u00f6dinger\u2019s equation in isolated systems \u2013 the quantum state evolves by the process of minimizing \u201ccomputational cost\u201d.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1140/epjc/s10052-019-6600-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1049394", 
        "issn": [
          "1434-6044", 
          "1434-6052"
        ], 
        "name": "The European Physical Journal C", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "79"
      }
    ], 
    "name": "Principles and symmetries of complexity in quantum field theory", 
    "pagination": "109", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5dcaa1bc616a0d2a07c76c768f2df0d9d31cd1e34da55d95e79ade96038adc85"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1140/epjc/s10052-019-6600-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111911112"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1140/epjc/s10052-019-6600-3", 
      "https://app.dimensions.ai/details/publication/pub.1111911112"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:43", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000358_0000000358/records_127448_00000011.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1140%2Fepjc%2Fs10052-019-6600-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epjc/s10052-019-6600-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epjc/s10052-019-6600-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epjc/s10052-019-6600-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epjc/s10052-019-6600-3'


 

This table displays all metadata directly associated to this object as RDF triples.

200 TRIPLES      21 PREDICATES      57 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1140/epjc/s10052-019-6600-3 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N2db7752c9a1c443c99facb505d861476
4 schema:citation sg:pub.10.1007/978-1-4612-1268-3
5 sg:pub.10.1007/978-1-4614-4244-8
6 sg:pub.10.1007/978-94-009-5329-1
7 sg:pub.10.1007/jhep01(2017)062
8 sg:pub.10.1007/jhep02(2018)082
9 sg:pub.10.1007/jhep03(2017)118
10 sg:pub.10.1007/jhep03(2017)119
11 sg:pub.10.1007/jhep09(2016)161
12 sg:pub.10.1007/jhep09(2017)042
13 sg:pub.10.1007/jhep10(2017)107
14 sg:pub.10.1007/jhep11(2016)129
15 sg:pub.10.1007/jhep11(2017)097
16 sg:pub.10.1007/jhep11(2017)188
17 sg:pub.10.1186/2251-7456-7-37
18 https://app.dimensions.ai/details/publication/pub.1002559558
19 https://doi.org/10.1002/prop.201500093
20 https://doi.org/10.1002/prop.201500095
21 https://doi.org/10.1017/cbo9780511976667
22 https://doi.org/10.1088/1361-6382/aa6925
23 https://doi.org/10.1103/physrev.59.195
24 https://doi.org/10.1103/physrevd.90.126007
25 https://doi.org/10.1103/physrevd.92.126009
26 https://doi.org/10.1103/physrevd.94.084046
27 https://doi.org/10.1103/physrevlett.115.171602
28 https://doi.org/10.1103/physrevlett.115.180405
29 https://doi.org/10.1103/physrevlett.115.200401
30 https://doi.org/10.1103/physrevlett.116.191301
31 https://doi.org/10.1103/physrevlett.119.071602
32 https://doi.org/10.1103/physrevlett.96.181602
33 https://doi.org/10.1137/1.9780898717778
34 schema:datePublished 2019-02
35 schema:datePublishedReg 2019-02-01
36 schema:description Based on general and minimal properties of the discrete circuit complexity, we define the complexity in continuous systems in a geometrical way. We first show that the Finsler metric naturally emerges in the geometry of the complexity in continuous systems. Due to fundamental symmetries of quantum field theories, the Finsler metric is more constrained and consequently, the complexity of SU(n) operators is uniquely determined as a length of a geodesic in the Finsler geometry. Our Finsler metric is bi-invariant contrary to the right-invariance of discrete qubit systems. We clarify why the bi-invariance is relevant in quantum field theoretic systems. After comparing our results with discrete qubit systems we show most results in k-local right-invariant metric can also appear in our framework. Based on the bi-invariance of our formalism, we propose a new interpretation for the Schrödinger’s equation in isolated systems – the quantum state evolves by the process of minimizing “computational cost”.
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree false
40 schema:isPartOf N4d95ea47010c4f7886c58a93356981d0
41 N6e6f6cbf59134b12b4ec2c5d9cb097a3
42 sg:journal.1049394
43 schema:name Principles and symmetries of complexity in quantum field theory
44 schema:pagination 109
45 schema:productId N136c1f6c26844d0aa0f42ee261699123
46 N14c0f6abde9648f99490abe6b2a257c5
47 N8e2afefc10094135988d8c63c60ce650
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111911112
49 https://doi.org/10.1140/epjc/s10052-019-6600-3
50 schema:sdDatePublished 2019-04-11T11:43
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher Nf872fe1d329c4585a0c79d571573adc4
53 schema:url https://link.springer.com/10.1140%2Fepjc%2Fs10052-019-6600-3
54 sgo:license sg:explorer/license/
55 sgo:sdDataset articles
56 rdf:type schema:ScholarlyArticle
57 N136c1f6c26844d0aa0f42ee261699123 schema:name dimensions_id
58 schema:value pub.1111911112
59 rdf:type schema:PropertyValue
60 N14c0f6abde9648f99490abe6b2a257c5 schema:name readcube_id
61 schema:value 5dcaa1bc616a0d2a07c76c768f2df0d9d31cd1e34da55d95e79ade96038adc85
62 rdf:type schema:PropertyValue
63 N2db7752c9a1c443c99facb505d861476 rdf:first Na236711aabe745b3aea882e99fbc98b0
64 rdf:rest Nd3b112b6e5e9411094ff1f7db6719c8e
65 N3758ee57678648bab3ceadfbd1f7f67d rdf:first N8ab9471eef64478c8660a70510f94c0b
66 rdf:rest N612669af250a4533b5d42ef6079d4da8
67 N4d95ea47010c4f7886c58a93356981d0 schema:issueNumber 2
68 rdf:type schema:PublicationIssue
69 N612669af250a4533b5d42ef6079d4da8 rdf:first Nb0f7f862cd164b68a944b2e13376f3ab
70 rdf:rest N8cb16c1d9ff441e1839c694f6bc499c4
71 N677b709b83e34cbba49c7474e91a54ee schema:affiliation https://www.grid.ac/institutes/grid.410726.6
72 schema:familyName An
73 schema:givenName Yu-Sen
74 rdf:type schema:Person
75 N6e6f6cbf59134b12b4ec2c5d9cb097a3 schema:volumeNumber 79
76 rdf:type schema:PublicationVolume
77 N8ab9471eef64478c8660a70510f94c0b schema:affiliation https://www.grid.ac/institutes/grid.258164.c
78 schema:familyName Niu
79 schema:givenName Chao
80 rdf:type schema:Person
81 N8cb16c1d9ff441e1839c694f6bc499c4 rdf:first Nf56d8e25b82e43da841b0184d98d17d3
82 rdf:rest rdf:nil
83 N8e2afefc10094135988d8c63c60ce650 schema:name doi
84 schema:value 10.1140/epjc/s10052-019-6600-3
85 rdf:type schema:PropertyValue
86 Na236711aabe745b3aea882e99fbc98b0 schema:affiliation https://www.grid.ac/institutes/grid.249961.1
87 schema:familyName Yang
88 schema:givenName Run-Qiu
89 rdf:type schema:Person
90 Nb0f7f862cd164b68a944b2e13376f3ab schema:affiliation https://www.grid.ac/institutes/grid.8547.e
91 schema:familyName Zhang
92 schema:givenName Cheng-Yong
93 rdf:type schema:Person
94 Nd3b112b6e5e9411094ff1f7db6719c8e rdf:first N677b709b83e34cbba49c7474e91a54ee
95 rdf:rest N3758ee57678648bab3ceadfbd1f7f67d
96 Nf56d8e25b82e43da841b0184d98d17d3 schema:affiliation https://www.grid.ac/institutes/grid.61221.36
97 schema:familyName Kim
98 schema:givenName Keun-Young
99 rdf:type schema:Person
100 Nf872fe1d329c4585a0c79d571573adc4 schema:name Springer Nature - SN SciGraph project
101 rdf:type schema:Organization
102 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
103 schema:name Mathematical Sciences
104 rdf:type schema:DefinedTerm
105 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
106 schema:name Pure Mathematics
107 rdf:type schema:DefinedTerm
108 sg:journal.1049394 schema:issn 1434-6044
109 1434-6052
110 schema:name The European Physical Journal C
111 rdf:type schema:Periodical
112 sg:pub.10.1007/978-1-4612-1268-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002559558
113 https://doi.org/10.1007/978-1-4612-1268-3
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/978-1-4614-4244-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040504388
116 https://doi.org/10.1007/978-1-4614-4244-8
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/978-94-009-5329-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026239194
119 https://doi.org/10.1007/978-94-009-5329-1
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/jhep01(2017)062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051310133
122 https://doi.org/10.1007/jhep01(2017)062
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/jhep02(2018)082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101056499
125 https://doi.org/10.1007/jhep02(2018)082
126 rdf:type schema:CreativeWork
127 sg:pub.10.1007/jhep03(2017)118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084017795
128 https://doi.org/10.1007/jhep03(2017)118
129 rdf:type schema:CreativeWork
130 sg:pub.10.1007/jhep03(2017)119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084017796
131 https://doi.org/10.1007/jhep03(2017)119
132 rdf:type schema:CreativeWork
133 sg:pub.10.1007/jhep09(2016)161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037732402
134 https://doi.org/10.1007/jhep09(2016)161
135 rdf:type schema:CreativeWork
136 sg:pub.10.1007/jhep09(2017)042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091600795
137 https://doi.org/10.1007/jhep09(2017)042
138 rdf:type schema:CreativeWork
139 sg:pub.10.1007/jhep10(2017)107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092261099
140 https://doi.org/10.1007/jhep10(2017)107
141 rdf:type schema:CreativeWork
142 sg:pub.10.1007/jhep11(2016)129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027977595
143 https://doi.org/10.1007/jhep11(2016)129
144 rdf:type schema:CreativeWork
145 sg:pub.10.1007/jhep11(2017)097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092749732
146 https://doi.org/10.1007/jhep11(2017)097
147 rdf:type schema:CreativeWork
148 sg:pub.10.1007/jhep11(2017)188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093061184
149 https://doi.org/10.1007/jhep11(2017)188
150 rdf:type schema:CreativeWork
151 sg:pub.10.1186/2251-7456-7-37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004954237
152 https://doi.org/10.1186/2251-7456-7-37
153 rdf:type schema:CreativeWork
154 https://app.dimensions.ai/details/publication/pub.1002559558 schema:CreativeWork
155 https://doi.org/10.1002/prop.201500093 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002366392
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1002/prop.201500095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021945615
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1017/cbo9780511976667 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098774954
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1088/1361-6382/aa6925 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084172272
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1103/physrev.59.195 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060451481
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1103/physrevd.90.126007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008368776
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1103/physrevd.92.126009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060711455
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1103/physrevd.94.084046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060714253
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1103/physrevlett.115.171602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060764286
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1103/physrevlett.115.180405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039091233
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1103/physrevlett.115.200401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038416947
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1103/physrevlett.116.191301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060765530
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1103/physrevlett.119.071602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091274102
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1103/physrevlett.96.181602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002119197
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1137/1.9780898717778 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098556566
184 rdf:type schema:CreativeWork
185 https://www.grid.ac/institutes/grid.249961.1 schema:alternateName Korea Institute for Advanced Study
186 schema:name Quantum Universe Center, Korea Institute for Advanced Study, 130-722, Seoul, South Korea
187 rdf:type schema:Organization
188 https://www.grid.ac/institutes/grid.258164.c schema:alternateName Jinan University
189 schema:name Department of Physics and Siyuan Laboratory, Jinan University, 510632, Guangzhou, China
190 rdf:type schema:Organization
191 https://www.grid.ac/institutes/grid.410726.6 schema:alternateName University of Chinese Academy of Sciences
192 schema:name Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Science, 100190, Beijing, China
193 School of physical Science, University of Chinese Academy of Science, 100049, Beijing, China
194 rdf:type schema:Organization
195 https://www.grid.ac/institutes/grid.61221.36 schema:alternateName Gwangju Institute of Science and Technology
196 schema:name School of Physics and Chemistry, Gwangju Institute of Science and Technology, 61005, Gwangju, South Korea
197 rdf:type schema:Organization
198 https://www.grid.ac/institutes/grid.8547.e schema:alternateName Fudan University
199 schema:name Department of Physics and Center for Field Theory and Particle Physics, Fudan University, 200433, Shanghai, China
200 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...