Minimal constrained superfields and the Fayet–Iliopoulos model View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-09

AUTHORS

Karim Benakli, Yifan Chen, Mark D. Goodsell

ABSTRACT

We show how the necessary constraints to project out all the components of a chiral superfield except for some scalar degrees of freedom originate from simple operators in the microscopic theory. This is in particular useful in constructing the simplest models of a goldstone boson/inflaton; or extracting the Standard Model Higgs doublet from a supersymmetric electroweak sector. We use the Fayet-Iliopoulos model as an example of the origin for the supersymmetry breaking. We consider the regime where both gauge symmetry and supersymmetry are spontaneously broken, leaving (in the decoupling limit) the goldstino as the only light mode in this sector. We show in three different ways, both in components and in superspace language, how the nilpotent goldstino superfield emerges. We then use it to write different effective operators and extract some of the consequences for the low energy spectrum. More... »

PAGES

711

References to SciGraph publications

  • 2017-08. From linear to non-linear SUSY and back again in JOURNAL OF HIGH ENERGY PHYSICS
  • 2011-11. Leading-order actions of Goldstino fields in THE EUROPEAN PHYSICAL JOURNAL C
  • 2009-09-14. From linear SUSY to constrained superfields in JOURNAL OF HIGH ENERGY PHYSICS
  • 2010-01. Constrained superfields and standard realization of nonlinear supersymmetry in JOURNAL OF HIGH ENERGY PHYSICS
  • 2016-11. The goldstino brane, the constrained superfields and matter in N=1 supergravity in JOURNAL OF HIGH ENERGY PHYSICS
  • 2017-10. Anti-D3 branes and moduli in non-linear supergravity in JOURNAL OF HIGH ENERGY PHYSICS
  • 2016-05. On the origin of constrained superfields in JOURNAL OF HIGH ENERGY PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1140/epjc/s10052-018-6178-1

    DOI

    http://dx.doi.org/10.1140/epjc/s10052-018-6178-1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1106625718

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30839753


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Laboratory of Theoretical and High Energy Physics", 
              "id": "https://www.grid.ac/institutes/grid.463942.e", 
              "name": [
                "Laboratoire de Physique Th\u00e9orique et Hautes Energies (LPTHE), UMR 7589, Sorbonne Universit\u00e9 et CNRS, 4 Place Jussieu, 75252, Paris Cedex 05, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Benakli", 
            "givenName": "Karim", 
            "id": "sg:person.014733257113.90", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014733257113.90"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Laboratory of Theoretical and High Energy Physics", 
              "id": "https://www.grid.ac/institutes/grid.463942.e", 
              "name": [
                "Laboratoire de Physique Th\u00e9orique et Hautes Energies (LPTHE), UMR 7589, Sorbonne Universit\u00e9 et CNRS, 4 Place Jussieu, 75252, Paris Cedex 05, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chen", 
            "givenName": "Yifan", 
            "id": "sg:person.015343056616.27", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015343056616.27"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Laboratory of Theoretical and High Energy Physics", 
              "id": "https://www.grid.ac/institutes/grid.463942.e", 
              "name": [
                "Laboratoire de Physique Th\u00e9orique et Hautes Energies (LPTHE), UMR 7589, Sorbonne Universit\u00e9 et CNRS, 4 Place Jussieu, 75252, Paris Cedex 05, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Goodsell", 
            "givenName": "Mark D.", 
            "id": "sg:person.014237335747.23", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014237335747.23"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/jhep05(2016)041", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002721303", 
              "https://doi.org/10.1007/jhep05(2016)041"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-2693(73)90490-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018892899"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-2693(73)90490-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018892899"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.nuclphysb.2014.10.020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020423747"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-2693(89)90788-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020889408"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-2693(89)90788-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020889408"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.93.043516", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022032662"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.93.043516", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022032662"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep11(2016)109", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022927760", 
              "https://doi.org/10.1007/jhep11(2016)109"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep11(2016)109", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022927760", 
              "https://doi.org/10.1007/jhep11(2016)109"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1140/epjc/s10052-011-1793-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028525022", 
              "https://doi.org/10.1140/epjc/s10052-011-1793-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physletb.2011.03.020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032989587"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2010)043", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035573236", 
              "https://doi.org/10.1007/jhep01(2010)043"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep01(2010)043", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035573236", 
              "https://doi.org/10.1007/jhep01(2010)043"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2009/09/066", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035924085", 
              "https://doi.org/10.1088/1126-6708/2009/09/066"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2009/09/066", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035924085", 
              "https://doi.org/10.1088/1126-6708/2009/09/066"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.nuclphysb.2012.10.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036620928"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.nuclphysb.2010.08.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037022719"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(83)90622-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042838400"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(83)90622-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042838400"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-2693(74)90310-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045026268"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-2693(74)90310-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045026268"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.114.201802", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053497121"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.114.201802", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053497121"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0305-4470/11/12/005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059064457"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0305-4616/8/2/004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059088479"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.19.2300", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060686624"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.19.2300", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060686624"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.41.451", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060783265"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.41.451", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060783265"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep08(2017)117", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091391766", 
              "https://doi.org/10.1007/jhep08(2017)117"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physletb.2017.09.020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091608663"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2017)185", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092410559", 
              "https://doi.org/10.1007/jhep10(2017)185"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.96.126015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100093350"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.96.126015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100093350"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-09", 
        "datePublishedReg": "2018-09-01", 
        "description": "We show how the necessary constraints to project out all the components of a chiral superfield except for some scalar degrees of freedom originate from simple operators in the microscopic theory. This is in particular useful in constructing the simplest models of a goldstone boson/inflaton; or extracting the Standard Model Higgs doublet from a supersymmetric electroweak sector. We use the Fayet-Iliopoulos model as an example of the origin for the supersymmetry breaking. We consider the regime where both gauge symmetry and supersymmetry are spontaneously broken, leaving (in the decoupling limit) the goldstino as the only light mode in this sector. We show in three different ways, both in components and in superspace language, how the nilpotent goldstino superfield emerges. We then use it to write different effective operators and extract some of the consequences for the low energy spectrum.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1140/epjc/s10052-018-6178-1", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.4731264", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1049394", 
            "issn": [
              "1434-6044", 
              "1434-6052"
            ], 
            "name": "The European Physical Journal C", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "9", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "78"
          }
        ], 
        "name": "Minimal constrained superfields and the Fayet\u2013Iliopoulos model", 
        "pagination": "711", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "78cc8d16c0f12319e35e89f102007c7ab21b854f36178639a3b6d6ea4905fc01"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30839753"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101622319"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1140/epjc/s10052-018-6178-1"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1106625718"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1140/epjc/s10052-018-6178-1", 
          "https://app.dimensions.ai/details/publication/pub.1106625718"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T11:18", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000354_0000000354/records_11704_00000002.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1140%2Fepjc%2Fs10052-018-6178-1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epjc/s10052-018-6178-1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epjc/s10052-018-6178-1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epjc/s10052-018-6178-1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epjc/s10052-018-6178-1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    161 TRIPLES      21 PREDICATES      52 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1140/epjc/s10052-018-6178-1 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Nd834e2aa4988454c872145255cd651cb
    4 schema:citation sg:pub.10.1007/jhep01(2010)043
    5 sg:pub.10.1007/jhep05(2016)041
    6 sg:pub.10.1007/jhep08(2017)117
    7 sg:pub.10.1007/jhep10(2017)185
    8 sg:pub.10.1007/jhep11(2016)109
    9 sg:pub.10.1088/1126-6708/2009/09/066
    10 sg:pub.10.1140/epjc/s10052-011-1793-0
    11 https://doi.org/10.1016/0370-2693(73)90490-5
    12 https://doi.org/10.1016/0370-2693(74)90310-4
    13 https://doi.org/10.1016/0370-2693(89)90788-0
    14 https://doi.org/10.1016/0550-3213(83)90622-3
    15 https://doi.org/10.1016/j.nuclphysb.2010.08.002
    16 https://doi.org/10.1016/j.nuclphysb.2012.10.010
    17 https://doi.org/10.1016/j.nuclphysb.2014.10.020
    18 https://doi.org/10.1016/j.physletb.2011.03.020
    19 https://doi.org/10.1016/j.physletb.2017.09.020
    20 https://doi.org/10.1088/0305-4470/11/12/005
    21 https://doi.org/10.1088/0305-4616/8/2/004
    22 https://doi.org/10.1103/physrevd.19.2300
    23 https://doi.org/10.1103/physrevd.93.043516
    24 https://doi.org/10.1103/physrevd.96.126015
    25 https://doi.org/10.1103/physrevlett.114.201802
    26 https://doi.org/10.1103/physrevlett.41.451
    27 schema:datePublished 2018-09
    28 schema:datePublishedReg 2018-09-01
    29 schema:description We show how the necessary constraints to project out all the components of a chiral superfield except for some scalar degrees of freedom originate from simple operators in the microscopic theory. This is in particular useful in constructing the simplest models of a goldstone boson/inflaton; or extracting the Standard Model Higgs doublet from a supersymmetric electroweak sector. We use the Fayet-Iliopoulos model as an example of the origin for the supersymmetry breaking. We consider the regime where both gauge symmetry and supersymmetry are spontaneously broken, leaving (in the decoupling limit) the goldstino as the only light mode in this sector. We show in three different ways, both in components and in superspace language, how the nilpotent goldstino superfield emerges. We then use it to write different effective operators and extract some of the consequences for the low energy spectrum.
    30 schema:genre research_article
    31 schema:inLanguage en
    32 schema:isAccessibleForFree true
    33 schema:isPartOf N1dd800153d4b42fc847006238e06eb3f
    34 N6175a6b4cd744f0abbe5f2f890d4e702
    35 sg:journal.1049394
    36 schema:name Minimal constrained superfields and the Fayet–Iliopoulos model
    37 schema:pagination 711
    38 schema:productId N7b789748fa5f4ce990ca1fd2ffdb30c3
    39 Nc7a8a21badb644aab68c49cc309deb29
    40 Nd2a544646da4479690b26ee83053057a
    41 Nf639632365a84803ab99cb1119cc159e
    42 Nfbebb082ce8847b2976d81d212729a44
    43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106625718
    44 https://doi.org/10.1140/epjc/s10052-018-6178-1
    45 schema:sdDatePublished 2019-04-11T11:18
    46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    47 schema:sdPublisher Nfa8cc769a2234b808e01525a098c383f
    48 schema:url https://link.springer.com/10.1140%2Fepjc%2Fs10052-018-6178-1
    49 sgo:license sg:explorer/license/
    50 sgo:sdDataset articles
    51 rdf:type schema:ScholarlyArticle
    52 N1dd800153d4b42fc847006238e06eb3f schema:volumeNumber 78
    53 rdf:type schema:PublicationVolume
    54 N6175a6b4cd744f0abbe5f2f890d4e702 schema:issueNumber 9
    55 rdf:type schema:PublicationIssue
    56 N7b789748fa5f4ce990ca1fd2ffdb30c3 schema:name doi
    57 schema:value 10.1140/epjc/s10052-018-6178-1
    58 rdf:type schema:PropertyValue
    59 Na62a2a63201942f1884659145c8faaba rdf:first sg:person.014237335747.23
    60 rdf:rest rdf:nil
    61 Nc7a8a21badb644aab68c49cc309deb29 schema:name pubmed_id
    62 schema:value 30839753
    63 rdf:type schema:PropertyValue
    64 Nd2a544646da4479690b26ee83053057a schema:name dimensions_id
    65 schema:value pub.1106625718
    66 rdf:type schema:PropertyValue
    67 Nd834e2aa4988454c872145255cd651cb rdf:first sg:person.014733257113.90
    68 rdf:rest Nff1b025a8c2c4e5893853aa9331d5920
    69 Nf639632365a84803ab99cb1119cc159e schema:name nlm_unique_id
    70 schema:value 101622319
    71 rdf:type schema:PropertyValue
    72 Nfa8cc769a2234b808e01525a098c383f schema:name Springer Nature - SN SciGraph project
    73 rdf:type schema:Organization
    74 Nfbebb082ce8847b2976d81d212729a44 schema:name readcube_id
    75 schema:value 78cc8d16c0f12319e35e89f102007c7ab21b854f36178639a3b6d6ea4905fc01
    76 rdf:type schema:PropertyValue
    77 Nff1b025a8c2c4e5893853aa9331d5920 rdf:first sg:person.015343056616.27
    78 rdf:rest Na62a2a63201942f1884659145c8faaba
    79 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    80 schema:name Mathematical Sciences
    81 rdf:type schema:DefinedTerm
    82 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    83 schema:name Pure Mathematics
    84 rdf:type schema:DefinedTerm
    85 sg:grant.4731264 http://pending.schema.org/fundedItem sg:pub.10.1140/epjc/s10052-018-6178-1
    86 rdf:type schema:MonetaryGrant
    87 sg:journal.1049394 schema:issn 1434-6044
    88 1434-6052
    89 schema:name The European Physical Journal C
    90 rdf:type schema:Periodical
    91 sg:person.014237335747.23 schema:affiliation https://www.grid.ac/institutes/grid.463942.e
    92 schema:familyName Goodsell
    93 schema:givenName Mark D.
    94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014237335747.23
    95 rdf:type schema:Person
    96 sg:person.014733257113.90 schema:affiliation https://www.grid.ac/institutes/grid.463942.e
    97 schema:familyName Benakli
    98 schema:givenName Karim
    99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014733257113.90
    100 rdf:type schema:Person
    101 sg:person.015343056616.27 schema:affiliation https://www.grid.ac/institutes/grid.463942.e
    102 schema:familyName Chen
    103 schema:givenName Yifan
    104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015343056616.27
    105 rdf:type schema:Person
    106 sg:pub.10.1007/jhep01(2010)043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035573236
    107 https://doi.org/10.1007/jhep01(2010)043
    108 rdf:type schema:CreativeWork
    109 sg:pub.10.1007/jhep05(2016)041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002721303
    110 https://doi.org/10.1007/jhep05(2016)041
    111 rdf:type schema:CreativeWork
    112 sg:pub.10.1007/jhep08(2017)117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091391766
    113 https://doi.org/10.1007/jhep08(2017)117
    114 rdf:type schema:CreativeWork
    115 sg:pub.10.1007/jhep10(2017)185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092410559
    116 https://doi.org/10.1007/jhep10(2017)185
    117 rdf:type schema:CreativeWork
    118 sg:pub.10.1007/jhep11(2016)109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022927760
    119 https://doi.org/10.1007/jhep11(2016)109
    120 rdf:type schema:CreativeWork
    121 sg:pub.10.1088/1126-6708/2009/09/066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035924085
    122 https://doi.org/10.1088/1126-6708/2009/09/066
    123 rdf:type schema:CreativeWork
    124 sg:pub.10.1140/epjc/s10052-011-1793-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028525022
    125 https://doi.org/10.1140/epjc/s10052-011-1793-0
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1016/0370-2693(73)90490-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018892899
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1016/0370-2693(74)90310-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045026268
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1016/0370-2693(89)90788-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020889408
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1016/0550-3213(83)90622-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042838400
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1016/j.nuclphysb.2010.08.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037022719
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1016/j.nuclphysb.2012.10.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036620928
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1016/j.nuclphysb.2014.10.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020423747
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1016/j.physletb.2011.03.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032989587
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1016/j.physletb.2017.09.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091608663
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1088/0305-4470/11/12/005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059064457
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1088/0305-4616/8/2/004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059088479
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1103/physrevd.19.2300 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060686624
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1103/physrevd.93.043516 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022032662
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1103/physrevd.96.126015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100093350
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1103/physrevlett.114.201802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053497121
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1103/physrevlett.41.451 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060783265
    158 rdf:type schema:CreativeWork
    159 https://www.grid.ac/institutes/grid.463942.e schema:alternateName Laboratory of Theoretical and High Energy Physics
    160 schema:name Laboratoire de Physique Théorique et Hautes Energies (LPTHE), UMR 7589, Sorbonne Université et CNRS, 4 Place Jussieu, 75252, Paris Cedex 05, France
    161 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...