Correction exponents in the Gross–Neveu–Yukawa model at 1/N2 View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-06-06

AUTHORS

Alexander N. Manashov, Matthias Strohmaier

ABSTRACT

We calculate the critical exponents ω±\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _\pm $$\end{document} in the d-dimensional Gross–Neveu model in 1 / N expansion with 1/N2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1/N^2$$\end{document} accuracy. These exponents are related to the slopes of the β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}-functions at the critical point in the Gross–Neveu–Yukawa model. They have been computed recently to four loops accuracy. We checked that our results are in complete agreement with the results of the perturbative calculations. More... »

PAGES

454

References to SciGraph publications

  • 2017-08-23. Higher spin currents in the critical O(N) vector model at 1/N2 in JOURNAL OF HIGH ENERGY PHYSICS
  • 2017-01-30. Higher-spin currents in the Gross-Neveu model at 1/n2 in JOURNAL OF HIGH ENERGY PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1140/epjc/s10052-018-5902-1

    DOI

    http://dx.doi.org/10.1140/epjc/s10052-018-5902-1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1104427703


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Quantum Physics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institut f\u00fcr Theoretische Physik, Universit\u00e4t Regensburg, 93040, Regensburg, Germany", 
              "id": "http://www.grid.ac/institutes/grid.7727.5", 
              "name": [
                "Institut f\u00fcr Theoretische Physik, Universit\u00e4t Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany", 
                "Institut f\u00fcr Theoretische Physik, Universit\u00e4t Regensburg, 93040, Regensburg, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Manashov", 
            "givenName": "Alexander N.", 
            "id": "sg:person.011055347723.72", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011055347723.72"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institut f\u00fcr Theoretische Physik, Universit\u00e4t Regensburg, 93040, Regensburg, Germany", 
              "id": "http://www.grid.ac/institutes/grid.7727.5", 
              "name": [
                "Institut f\u00fcr Theoretische Physik, Universit\u00e4t Regensburg, 93040, Regensburg, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Strohmaier", 
            "givenName": "Matthias", 
            "id": "sg:person.015406775513.54", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015406775513.54"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/jhep01(2017)132", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083413178", 
              "https://doi.org/10.1007/jhep01(2017)132"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep08(2017)106", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091325363", 
              "https://doi.org/10.1007/jhep08(2017)106"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-06-06", 
        "datePublishedReg": "2018-06-06", 
        "description": "We calculate the critical exponents \u03c9\u00b1\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\omega _\\pm $$\\end{document} in the d-dimensional Gross\u2013Neveu model in 1\u00a0/\u00a0N expansion with 1/N2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$1/N^2$$\\end{document} accuracy. These exponents are related to the slopes of the \u03b2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\beta $$\\end{document}-functions at the critical point in the Gross\u2013Neveu\u2013Yukawa model. They have been computed recently to four loops accuracy. We checked that our results are in complete agreement with the results of the perturbative calculations.", 
        "genre": "article", 
        "id": "sg:pub.10.1140/epjc/s10052-018-5902-1", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1049394", 
            "issn": [
              "1434-6044", 
              "1434-6052"
            ], 
            "name": "European Physical Journal C", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "78"
          }
        ], 
        "keywords": [
          "complete agreement", 
          "results", 
          "model", 
          "expansion", 
          "accuracy", 
          "point", 
          "slope", 
          "agreement", 
          "correction exponent", 
          "N2", 
          "critical point", 
          "exponent", 
          "Gross-Neveu", 
          "calculations", 
          "critical exponents", 
          "dimensional Gross-Neveu model", 
          "Gross-Neveu model", 
          "Yukawa model", 
          "perturbative calculations", 
          "loop accuracy"
        ], 
        "name": "Correction exponents in the Gross\u2013Neveu\u2013Yukawa model at 1/N2", 
        "pagination": "454", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1104427703"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1140/epjc/s10052-018-5902-1"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1140/epjc/s10052-018-5902-1", 
          "https://app.dimensions.ai/details/publication/pub.1104427703"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:43", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_780.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1140/epjc/s10052-018-5902-1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epjc/s10052-018-5902-1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epjc/s10052-018-5902-1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epjc/s10052-018-5902-1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epjc/s10052-018-5902-1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    98 TRIPLES      22 PREDICATES      48 URIs      37 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1140/epjc/s10052-018-5902-1 schema:about anzsrc-for:02
    2 anzsrc-for:0202
    3 anzsrc-for:0206
    4 schema:author N5949575d9bae423fbd86ad5bf532e466
    5 schema:citation sg:pub.10.1007/jhep01(2017)132
    6 sg:pub.10.1007/jhep08(2017)106
    7 schema:datePublished 2018-06-06
    8 schema:datePublishedReg 2018-06-06
    9 schema:description We calculate the critical exponents ω±\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _\pm $$\end{document} in the d-dimensional Gross–Neveu model in 1 / N expansion with 1/N2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1/N^2$$\end{document} accuracy. These exponents are related to the slopes of the β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}-functions at the critical point in the Gross–Neveu–Yukawa model. They have been computed recently to four loops accuracy. We checked that our results are in complete agreement with the results of the perturbative calculations.
    10 schema:genre article
    11 schema:inLanguage en
    12 schema:isAccessibleForFree true
    13 schema:isPartOf N120328f754f442d2b42600e863d32842
    14 Ne7270575aa7547ae825f1337350cbc65
    15 sg:journal.1049394
    16 schema:keywords Gross-Neveu
    17 Gross-Neveu model
    18 N2
    19 Yukawa model
    20 accuracy
    21 agreement
    22 calculations
    23 complete agreement
    24 correction exponent
    25 critical exponents
    26 critical point
    27 dimensional Gross-Neveu model
    28 expansion
    29 exponent
    30 loop accuracy
    31 model
    32 perturbative calculations
    33 point
    34 results
    35 slope
    36 schema:name Correction exponents in the Gross–Neveu–Yukawa model at 1/N2
    37 schema:pagination 454
    38 schema:productId Nbd844ad933ec4ebb9cdd7f96d8611e81
    39 Ncab00433321a4a4aa797f1981a00a2fe
    40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104427703
    41 https://doi.org/10.1140/epjc/s10052-018-5902-1
    42 schema:sdDatePublished 2021-12-01T19:43
    43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    44 schema:sdPublisher Nfa405e269b7444ad84e614154f720857
    45 schema:url https://doi.org/10.1140/epjc/s10052-018-5902-1
    46 sgo:license sg:explorer/license/
    47 sgo:sdDataset articles
    48 rdf:type schema:ScholarlyArticle
    49 N120328f754f442d2b42600e863d32842 schema:issueNumber 6
    50 rdf:type schema:PublicationIssue
    51 N5949575d9bae423fbd86ad5bf532e466 rdf:first sg:person.011055347723.72
    52 rdf:rest Nb952cc3690cd498b8c5d984a81e9556a
    53 Nb952cc3690cd498b8c5d984a81e9556a rdf:first sg:person.015406775513.54
    54 rdf:rest rdf:nil
    55 Nbd844ad933ec4ebb9cdd7f96d8611e81 schema:name dimensions_id
    56 schema:value pub.1104427703
    57 rdf:type schema:PropertyValue
    58 Ncab00433321a4a4aa797f1981a00a2fe schema:name doi
    59 schema:value 10.1140/epjc/s10052-018-5902-1
    60 rdf:type schema:PropertyValue
    61 Ne7270575aa7547ae825f1337350cbc65 schema:volumeNumber 78
    62 rdf:type schema:PublicationVolume
    63 Nfa405e269b7444ad84e614154f720857 schema:name Springer Nature - SN SciGraph project
    64 rdf:type schema:Organization
    65 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    66 schema:name Physical Sciences
    67 rdf:type schema:DefinedTerm
    68 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
    69 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
    70 rdf:type schema:DefinedTerm
    71 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
    72 schema:name Quantum Physics
    73 rdf:type schema:DefinedTerm
    74 sg:journal.1049394 schema:issn 1434-6044
    75 1434-6052
    76 schema:name European Physical Journal C
    77 schema:publisher Springer Nature
    78 rdf:type schema:Periodical
    79 sg:person.011055347723.72 schema:affiliation grid-institutes:grid.7727.5
    80 schema:familyName Manashov
    81 schema:givenName Alexander N.
    82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011055347723.72
    83 rdf:type schema:Person
    84 sg:person.015406775513.54 schema:affiliation grid-institutes:grid.7727.5
    85 schema:familyName Strohmaier
    86 schema:givenName Matthias
    87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015406775513.54
    88 rdf:type schema:Person
    89 sg:pub.10.1007/jhep01(2017)132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083413178
    90 https://doi.org/10.1007/jhep01(2017)132
    91 rdf:type schema:CreativeWork
    92 sg:pub.10.1007/jhep08(2017)106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091325363
    93 https://doi.org/10.1007/jhep08(2017)106
    94 rdf:type schema:CreativeWork
    95 grid-institutes:grid.7727.5 schema:alternateName Institut für Theoretische Physik, Universität Regensburg, 93040, Regensburg, Germany
    96 schema:name Institut für Theoretische Physik, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
    97 Institut für Theoretische Physik, Universität Regensburg, 93040, Regensburg, Germany
    98 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...