Evolution of perturbed dynamical systems: analytical computation with time independent accuracy View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-12-10

AUTHORS

A. V. Gurzadyan, A. A. Kocharyan

ABSTRACT

An analytical method for investigation of the evolution of dynamical systems with independent on time accuracy is developed for perturbed Hamiltonian systems. The error-free estimation using of computer algebra enables the application of the method to complex multi-dimensional Hamiltonian and dissipative systems. It also opens principal opportunities for the qualitative study of chaotic trajectories. The performance of the method is demonstrated on perturbed two-oscillator systems. It can be applied to various non-linear physical and astrophysical systems, e.g. to long-term planetary dynamics. More... »

PAGES

685

Identifiers

URI

http://scigraph.springernature.com/pub.10.1140/epjc/s10052-016-4544-4

DOI

http://dx.doi.org/10.1140/epjc/s10052-016-4544-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1016229065


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematics and Mathematical Modelling, Russian\u2013Armenian (Slavonic) University, Yerevan, Armenia", 
          "id": "http://www.grid.ac/institutes/grid.449518.5", 
          "name": [
            "Department of Mathematics and Mathematical Modelling, Russian\u2013Armenian (Slavonic) University, Yerevan, Armenia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gurzadyan", 
        "givenName": "A. V.", 
        "id": "sg:person.013773343145.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013773343145.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Physics and Astronomy, Monash University, Clayton, Australia", 
          "id": "http://www.grid.ac/institutes/grid.1002.3", 
          "name": [
            "School of Physics and Astronomy, Monash University, Clayton, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kocharyan", 
        "givenName": "A. A.", 
        "id": "sg:person.011101341167.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011101341167.45"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1140/epjc/s10052-016-3961-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053515912", 
          "https://doi.org/10.1140/epjc/s10052-016-3961-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-2063-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032324369", 
          "https://doi.org/10.1007/978-1-4757-2063-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/361615a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014074202", 
          "https://doi.org/10.1038/361615a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjc/s10052-015-3560-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013969193", 
          "https://doi.org/10.1140/epjc/s10052-015-3560-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02128236", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053281450", 
          "https://doi.org/10.1007/bf02128236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjc/s10052-015-3479-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011386821", 
          "https://doi.org/10.1140/epjc/s10052-015-3479-5"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-12-10", 
    "datePublishedReg": "2016-12-10", 
    "description": "An analytical method for investigation of the evolution of dynamical systems with independent on time accuracy is developed for perturbed Hamiltonian systems. The error-free estimation using of computer algebra enables the application of the method to complex multi-dimensional Hamiltonian and dissipative systems. It also opens principal opportunities for the qualitative study of chaotic trajectories. The performance of the method is demonstrated on perturbed two-oscillator systems. It can be applied to various non-linear physical and astrophysical systems, e.g. to long-term planetary dynamics.", 
    "genre": "article", 
    "id": "sg:pub.10.1140/epjc/s10052-016-4544-4", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1049394", 
        "issn": [
          "1434-6044", 
          "1434-6052"
        ], 
        "name": "European Physical Journal C", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "76"
      }
    ], 
    "keywords": [
      "dynamical systems", 
      "perturbed dynamical systems", 
      "perturbed Hamiltonian systems", 
      "error-free estimation", 
      "two-oscillator system", 
      "Hamiltonian systems", 
      "computer algebra", 
      "chaotic trajectories", 
      "dissipative systems", 
      "analytical computation", 
      "planetary dynamics", 
      "time accuracy", 
      "independent accuracy", 
      "astrophysical systems", 
      "algebra", 
      "computation", 
      "system", 
      "analytical method", 
      "accuracy", 
      "estimation", 
      "dynamics", 
      "trajectories", 
      "principal opportunity", 
      "applications", 
      "performance", 
      "evolution", 
      "investigation", 
      "study", 
      "opportunities", 
      "qualitative study", 
      "method", 
      "long-term planetary dynamics", 
      "time independent accuracy"
    ], 
    "name": "Evolution of perturbed dynamical systems: analytical computation with time independent accuracy", 
    "pagination": "685", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1016229065"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1140/epjc/s10052-016-4544-4"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1140/epjc/s10052-016-4544-4", 
      "https://app.dimensions.ai/details/publication/pub.1016229065"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_705.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1140/epjc/s10052-016-4544-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epjc/s10052-016-4544-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epjc/s10052-016-4544-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epjc/s10052-016-4544-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epjc/s10052-016-4544-4'


 

This table displays all metadata directly associated to this object as RDF triples.

129 TRIPLES      22 PREDICATES      65 URIs      50 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1140/epjc/s10052-016-4544-4 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 anzsrc-for:0206
4 schema:author N72abfbbe90a8408f9d7466b0ec78a55e
5 schema:citation sg:pub.10.1007/978-1-4757-2063-1
6 sg:pub.10.1007/bf02128236
7 sg:pub.10.1038/361615a0
8 sg:pub.10.1140/epjc/s10052-015-3479-5
9 sg:pub.10.1140/epjc/s10052-015-3560-0
10 sg:pub.10.1140/epjc/s10052-016-3961-8
11 schema:datePublished 2016-12-10
12 schema:datePublishedReg 2016-12-10
13 schema:description An analytical method for investigation of the evolution of dynamical systems with independent on time accuracy is developed for perturbed Hamiltonian systems. The error-free estimation using of computer algebra enables the application of the method to complex multi-dimensional Hamiltonian and dissipative systems. It also opens principal opportunities for the qualitative study of chaotic trajectories. The performance of the method is demonstrated on perturbed two-oscillator systems. It can be applied to various non-linear physical and astrophysical systems, e.g. to long-term planetary dynamics.
14 schema:genre article
15 schema:inLanguage en
16 schema:isAccessibleForFree true
17 schema:isPartOf N652a783bf6d04e75b6d288dd2b001273
18 Nb250c3a6ad4b482cb331a8c5e79401f8
19 sg:journal.1049394
20 schema:keywords Hamiltonian systems
21 accuracy
22 algebra
23 analytical computation
24 analytical method
25 applications
26 astrophysical systems
27 chaotic trajectories
28 computation
29 computer algebra
30 dissipative systems
31 dynamical systems
32 dynamics
33 error-free estimation
34 estimation
35 evolution
36 independent accuracy
37 investigation
38 long-term planetary dynamics
39 method
40 opportunities
41 performance
42 perturbed Hamiltonian systems
43 perturbed dynamical systems
44 planetary dynamics
45 principal opportunity
46 qualitative study
47 study
48 system
49 time accuracy
50 time independent accuracy
51 trajectories
52 two-oscillator system
53 schema:name Evolution of perturbed dynamical systems: analytical computation with time independent accuracy
54 schema:pagination 685
55 schema:productId N5044cf0db86b4574b3aa3b6ff88327e3
56 N7480304b598c4c59a1229b6d15883033
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016229065
58 https://doi.org/10.1140/epjc/s10052-016-4544-4
59 schema:sdDatePublished 2021-11-01T18:27
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher Ne54e0525557c40e5874bcf4f67fc1d7b
62 schema:url https://doi.org/10.1140/epjc/s10052-016-4544-4
63 sgo:license sg:explorer/license/
64 sgo:sdDataset articles
65 rdf:type schema:ScholarlyArticle
66 N3ccfa9394be1483ab56430a4679b1f9f rdf:first sg:person.011101341167.45
67 rdf:rest rdf:nil
68 N5044cf0db86b4574b3aa3b6ff88327e3 schema:name doi
69 schema:value 10.1140/epjc/s10052-016-4544-4
70 rdf:type schema:PropertyValue
71 N652a783bf6d04e75b6d288dd2b001273 schema:volumeNumber 76
72 rdf:type schema:PublicationVolume
73 N72abfbbe90a8408f9d7466b0ec78a55e rdf:first sg:person.013773343145.92
74 rdf:rest N3ccfa9394be1483ab56430a4679b1f9f
75 N7480304b598c4c59a1229b6d15883033 schema:name dimensions_id
76 schema:value pub.1016229065
77 rdf:type schema:PropertyValue
78 Nb250c3a6ad4b482cb331a8c5e79401f8 schema:issueNumber 12
79 rdf:type schema:PublicationIssue
80 Ne54e0525557c40e5874bcf4f67fc1d7b schema:name Springer Nature - SN SciGraph project
81 rdf:type schema:Organization
82 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
83 schema:name Physical Sciences
84 rdf:type schema:DefinedTerm
85 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
86 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
87 rdf:type schema:DefinedTerm
88 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
89 schema:name Quantum Physics
90 rdf:type schema:DefinedTerm
91 sg:journal.1049394 schema:issn 1434-6044
92 1434-6052
93 schema:name European Physical Journal C
94 schema:publisher Springer Nature
95 rdf:type schema:Periodical
96 sg:person.011101341167.45 schema:affiliation grid-institutes:grid.1002.3
97 schema:familyName Kocharyan
98 schema:givenName A. A.
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011101341167.45
100 rdf:type schema:Person
101 sg:person.013773343145.92 schema:affiliation grid-institutes:grid.449518.5
102 schema:familyName Gurzadyan
103 schema:givenName A. V.
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013773343145.92
105 rdf:type schema:Person
106 sg:pub.10.1007/978-1-4757-2063-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032324369
107 https://doi.org/10.1007/978-1-4757-2063-1
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/bf02128236 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053281450
110 https://doi.org/10.1007/bf02128236
111 rdf:type schema:CreativeWork
112 sg:pub.10.1038/361615a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014074202
113 https://doi.org/10.1038/361615a0
114 rdf:type schema:CreativeWork
115 sg:pub.10.1140/epjc/s10052-015-3479-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011386821
116 https://doi.org/10.1140/epjc/s10052-015-3479-5
117 rdf:type schema:CreativeWork
118 sg:pub.10.1140/epjc/s10052-015-3560-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013969193
119 https://doi.org/10.1140/epjc/s10052-015-3560-0
120 rdf:type schema:CreativeWork
121 sg:pub.10.1140/epjc/s10052-016-3961-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053515912
122 https://doi.org/10.1140/epjc/s10052-016-3961-8
123 rdf:type schema:CreativeWork
124 grid-institutes:grid.1002.3 schema:alternateName School of Physics and Astronomy, Monash University, Clayton, Australia
125 schema:name School of Physics and Astronomy, Monash University, Clayton, Australia
126 rdf:type schema:Organization
127 grid-institutes:grid.449518.5 schema:alternateName Department of Mathematics and Mathematical Modelling, Russian–Armenian (Slavonic) University, Yerevan, Armenia
128 schema:name Department of Mathematics and Mathematical Modelling, Russian–Armenian (Slavonic) University, Yerevan, Armenia
129 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...