Higher-derivative gravity with non-minimally coupled Maxwell field View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-04

AUTHORS

Xing-Hui Feng, H. Lü

ABSTRACT

We construct higher-derivative gravities with a non-minimally coupled Maxwell field. The Lagrangian consists of polynomial invariants built from the Riemann tensor and the Maxwell field strength in such a way that the equations of motion are second order for both the metric and the Maxwell potential. We also generalize the construction to involve a generic non-minimally coupled p-form field strength. We then focus on one low-lying example in four dimensions and construct the exact magnetically charged black holes. We also construct exact electrically charged z=2 Lifshitz black holes. We obtain approximate dyonic black holes for the small coupling constant or small charges. We find that the thermodynamics based on the Wald formalism disagrees with that derived from the Euclidean action procedure, suggesting this may be a general situation in higher-derivative gravities with non-minimally coupled form fields. As an application in the AdS/CFT correspondence, we study the entropy/viscosity ratio for the AdS or Lifshitz planar black holes, and find that the exact ratio can be obtained without having to know the details of the solutions, even for this higher-derivative theory. More... »

PAGES

178

References to SciGraph publications

  • 1978-04. Classical gravity with higher derivatives in GENERAL RELATIVITY AND GRAVITATION
  • 1974-09. Second-order scalar-tensor field equations in a four-dimensional space in INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1140/epjc/s10052-016-4007-y

    DOI

    http://dx.doi.org/10.1140/epjc/s10052-016-4007-y

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1026237683


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Beijing Normal University", 
              "id": "https://www.grid.ac/institutes/grid.20513.35", 
              "name": [
                "Department of Physics, Center for Advanced Quantum Studies, Beijing Normal University, 100875, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Feng", 
            "givenName": "Xing-Hui", 
            "id": "sg:person.013666706147.44", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013666706147.44"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Beijing Normal University", 
              "id": "https://www.grid.ac/institutes/grid.20513.35", 
              "name": [
                "Department of Physics, Center for Advanced Quantum Studies, Beijing Normal University, 100875, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "L\u00fc", 
            "givenName": "H.", 
            "id": "sg:person.012136555175.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012136555175.11"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/0550-3213(89)90336-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001580554"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(89)90336-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001580554"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.48.r3427", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003093167"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.48.r3427", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003093167"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.83.066017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004109899"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.83.066017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004109899"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.60.064018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004539705"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.60.064018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004539705"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.83.061502", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009074655"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.83.061502", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009074655"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1751-8113/47/5/052001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014309900"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.102.201301", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015368072"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.102.201301", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015368072"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01807638", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017819398", 
              "https://doi.org/10.1007/bf01807638"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01807638", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017819398", 
              "https://doi.org/10.1007/bf01807638"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.84.066004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021527019"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.84.066004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021527019"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.106.181302", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022898053"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.106.181302", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022898053"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.79.066003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030327629"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.79.066003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030327629"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.94.111601", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031326231"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.94.111601", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031326231"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.50.846", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032503686"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.50.846", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032503686"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.84.024013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037510422"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.84.024013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037510422"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.79.086006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039549636"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.79.086006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039549636"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.77.126006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041564247"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.77.126006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041564247"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0370-2693(98)00377-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044092489"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.101.031601", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045045143"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.101.031601", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045045143"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0264-9381/2/4/004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045053271"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.83.065029", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048238911"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.83.065029", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048238911"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00760427", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049262530", 
              "https://doi.org/10.1007/bf00760427"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00760427", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049262530", 
              "https://doi.org/10.1007/bf00760427"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0550-3213(99)00419-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050369632"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1665613", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057743693"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.15.2752", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060684800"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.15.2752", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060684800"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.16.953", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060685489"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.16.953", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060685489"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016-04", 
        "datePublishedReg": "2016-04-01", 
        "description": "We construct higher-derivative gravities with a non-minimally coupled Maxwell field. The Lagrangian consists of polynomial invariants built from the Riemann tensor and the Maxwell field strength in such a way that the equations of motion are second order for both the metric and the Maxwell potential. We also generalize the construction to involve a generic non-minimally coupled p-form field strength. We then focus on one low-lying example in four dimensions and construct the exact magnetically charged black holes. We also construct exact electrically charged z=2 Lifshitz black holes. We obtain approximate dyonic black holes for the small coupling constant or small charges. We find that the thermodynamics based on the Wald formalism disagrees with that derived from the Euclidean action procedure, suggesting this may be a general situation in higher-derivative gravities with non-minimally coupled form fields. As an application in the AdS/CFT correspondence, we study the entropy/viscosity ratio for the AdS or Lifshitz planar black holes, and find that the exact ratio can be obtained without having to know the details of the solutions, even for this higher-derivative theory.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1140/epjc/s10052-016-4007-y", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1049394", 
            "issn": [
              "1434-6044", 
              "1434-6052"
            ], 
            "name": "The European Physical Journal C", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "76"
          }
        ], 
        "name": "Higher-derivative gravity with non-minimally coupled Maxwell field", 
        "pagination": "178", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "7cfeb2fed1926b4c62e019cda769b863979f58d9f26a2cfc6811599d3cd0759f"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1140/epjc/s10052-016-4007-y"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1026237683"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1140/epjc/s10052-016-4007-y", 
          "https://app.dimensions.ai/details/publication/pub.1026237683"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:11", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000367_0000000367/records_88253_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1140%2Fepjc%2Fs10052-016-4007-y"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epjc/s10052-016-4007-y'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epjc/s10052-016-4007-y'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epjc/s10052-016-4007-y'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epjc/s10052-016-4007-y'


     

    This table displays all metadata directly associated to this object as RDF triples.

    145 TRIPLES      21 PREDICATES      52 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1140/epjc/s10052-016-4007-y schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N90284c06e1354c07a3145fcd2fe47473
    4 schema:citation sg:pub.10.1007/bf00760427
    5 sg:pub.10.1007/bf01807638
    6 https://doi.org/10.1016/0550-3213(89)90336-2
    7 https://doi.org/10.1016/s0370-2693(98)00377-3
    8 https://doi.org/10.1016/s0550-3213(99)00419-8
    9 https://doi.org/10.1063/1.1665613
    10 https://doi.org/10.1088/0264-9381/2/4/004
    11 https://doi.org/10.1088/1751-8113/47/5/052001
    12 https://doi.org/10.1103/physrevd.15.2752
    13 https://doi.org/10.1103/physrevd.16.953
    14 https://doi.org/10.1103/physrevd.48.r3427
    15 https://doi.org/10.1103/physrevd.50.846
    16 https://doi.org/10.1103/physrevd.60.064018
    17 https://doi.org/10.1103/physrevd.77.126006
    18 https://doi.org/10.1103/physrevd.79.066003
    19 https://doi.org/10.1103/physrevd.79.086006
    20 https://doi.org/10.1103/physrevd.83.061502
    21 https://doi.org/10.1103/physrevd.83.065029
    22 https://doi.org/10.1103/physrevd.83.066017
    23 https://doi.org/10.1103/physrevd.84.024013
    24 https://doi.org/10.1103/physrevd.84.066004
    25 https://doi.org/10.1103/physrevlett.101.031601
    26 https://doi.org/10.1103/physrevlett.102.201301
    27 https://doi.org/10.1103/physrevlett.106.181302
    28 https://doi.org/10.1103/physrevlett.94.111601
    29 schema:datePublished 2016-04
    30 schema:datePublishedReg 2016-04-01
    31 schema:description We construct higher-derivative gravities with a non-minimally coupled Maxwell field. The Lagrangian consists of polynomial invariants built from the Riemann tensor and the Maxwell field strength in such a way that the equations of motion are second order for both the metric and the Maxwell potential. We also generalize the construction to involve a generic non-minimally coupled p-form field strength. We then focus on one low-lying example in four dimensions and construct the exact magnetically charged black holes. We also construct exact electrically charged z=2 Lifshitz black holes. We obtain approximate dyonic black holes for the small coupling constant or small charges. We find that the thermodynamics based on the Wald formalism disagrees with that derived from the Euclidean action procedure, suggesting this may be a general situation in higher-derivative gravities with non-minimally coupled form fields. As an application in the AdS/CFT correspondence, we study the entropy/viscosity ratio for the AdS or Lifshitz planar black holes, and find that the exact ratio can be obtained without having to know the details of the solutions, even for this higher-derivative theory.
    32 schema:genre research_article
    33 schema:inLanguage en
    34 schema:isAccessibleForFree true
    35 schema:isPartOf N7ce45f5f9326442ba0e557b86e2cd627
    36 Nb6a9f5c2954d4972a3138e5bae0601ce
    37 sg:journal.1049394
    38 schema:name Higher-derivative gravity with non-minimally coupled Maxwell field
    39 schema:pagination 178
    40 schema:productId N5d8a8ccdd3af43cd98511e988b4cf8cb
    41 N9a570a0edf124b8fa5866d2b2d59c2bd
    42 Na932a2174ff94ab4b7b33c504f52a411
    43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026237683
    44 https://doi.org/10.1140/epjc/s10052-016-4007-y
    45 schema:sdDatePublished 2019-04-11T13:11
    46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    47 schema:sdPublisher N170b55db1eb64d50a2da7803647ce8de
    48 schema:url http://link.springer.com/10.1140%2Fepjc%2Fs10052-016-4007-y
    49 sgo:license sg:explorer/license/
    50 sgo:sdDataset articles
    51 rdf:type schema:ScholarlyArticle
    52 N170b55db1eb64d50a2da7803647ce8de schema:name Springer Nature - SN SciGraph project
    53 rdf:type schema:Organization
    54 N5d8a8ccdd3af43cd98511e988b4cf8cb schema:name doi
    55 schema:value 10.1140/epjc/s10052-016-4007-y
    56 rdf:type schema:PropertyValue
    57 N7ce45f5f9326442ba0e557b86e2cd627 schema:issueNumber 4
    58 rdf:type schema:PublicationIssue
    59 N90284c06e1354c07a3145fcd2fe47473 rdf:first sg:person.013666706147.44
    60 rdf:rest N99a9f6f3834b44ae966a8bd696656f26
    61 N99a9f6f3834b44ae966a8bd696656f26 rdf:first sg:person.012136555175.11
    62 rdf:rest rdf:nil
    63 N9a570a0edf124b8fa5866d2b2d59c2bd schema:name dimensions_id
    64 schema:value pub.1026237683
    65 rdf:type schema:PropertyValue
    66 Na932a2174ff94ab4b7b33c504f52a411 schema:name readcube_id
    67 schema:value 7cfeb2fed1926b4c62e019cda769b863979f58d9f26a2cfc6811599d3cd0759f
    68 rdf:type schema:PropertyValue
    69 Nb6a9f5c2954d4972a3138e5bae0601ce schema:volumeNumber 76
    70 rdf:type schema:PublicationVolume
    71 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    72 schema:name Mathematical Sciences
    73 rdf:type schema:DefinedTerm
    74 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    75 schema:name Pure Mathematics
    76 rdf:type schema:DefinedTerm
    77 sg:journal.1049394 schema:issn 1434-6044
    78 1434-6052
    79 schema:name The European Physical Journal C
    80 rdf:type schema:Periodical
    81 sg:person.012136555175.11 schema:affiliation https://www.grid.ac/institutes/grid.20513.35
    82 schema:familyName
    83 schema:givenName H.
    84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012136555175.11
    85 rdf:type schema:Person
    86 sg:person.013666706147.44 schema:affiliation https://www.grid.ac/institutes/grid.20513.35
    87 schema:familyName Feng
    88 schema:givenName Xing-Hui
    89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013666706147.44
    90 rdf:type schema:Person
    91 sg:pub.10.1007/bf00760427 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049262530
    92 https://doi.org/10.1007/bf00760427
    93 rdf:type schema:CreativeWork
    94 sg:pub.10.1007/bf01807638 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017819398
    95 https://doi.org/10.1007/bf01807638
    96 rdf:type schema:CreativeWork
    97 https://doi.org/10.1016/0550-3213(89)90336-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001580554
    98 rdf:type schema:CreativeWork
    99 https://doi.org/10.1016/s0370-2693(98)00377-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044092489
    100 rdf:type schema:CreativeWork
    101 https://doi.org/10.1016/s0550-3213(99)00419-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050369632
    102 rdf:type schema:CreativeWork
    103 https://doi.org/10.1063/1.1665613 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057743693
    104 rdf:type schema:CreativeWork
    105 https://doi.org/10.1088/0264-9381/2/4/004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045053271
    106 rdf:type schema:CreativeWork
    107 https://doi.org/10.1088/1751-8113/47/5/052001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014309900
    108 rdf:type schema:CreativeWork
    109 https://doi.org/10.1103/physrevd.15.2752 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060684800
    110 rdf:type schema:CreativeWork
    111 https://doi.org/10.1103/physrevd.16.953 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060685489
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.1103/physrevd.48.r3427 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003093167
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1103/physrevd.50.846 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032503686
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1103/physrevd.60.064018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004539705
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1103/physrevd.77.126006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041564247
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1103/physrevd.79.066003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030327629
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1103/physrevd.79.086006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039549636
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1103/physrevd.83.061502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009074655
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1103/physrevd.83.065029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048238911
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1103/physrevd.83.066017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004109899
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1103/physrevd.84.024013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037510422
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1103/physrevd.84.066004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021527019
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1103/physrevlett.101.031601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045045143
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1103/physrevlett.102.201301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015368072
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1103/physrevlett.106.181302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022898053
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1103/physrevlett.94.111601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031326231
    142 rdf:type schema:CreativeWork
    143 https://www.grid.ac/institutes/grid.20513.35 schema:alternateName Beijing Normal University
    144 schema:name Department of Physics, Center for Advanced Quantum Studies, Beijing Normal University, 100875, Beijing, China
    145 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...