Density matrix of chaotic quantum systems View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2020-10-14

AUTHORS

Xinxin Yang, Pei Wang

ABSTRACT

The nonequilibrium dynamics in chaotic quantum systems denies a fully understanding up to now, even if thermalization in the long-time asymptotic state has been explained by the eigenstate thermalization hypothesis which assumes a universal form of the observable matrix elements in the eigenbasis of Hamiltonian. It was recently proposed that the density matrix elements have also a universal form, which can be used to understand the nonequilibrium dynamics at the whole time scale, from the transient regime to the long-time steady limit. In this paper, we numerically test these assumptions for density matrix in the models of spins.Graphical abstract More... »

PAGES

198

References to SciGraph publications

  • 2015-02-03. Quantum many-body systems out of equilibrium in NATURE PHYSICS
  • 2008-04. Thermalization and its mechanism for generic isolated quantum systems in NATURE
  • 2004-05. Gaussian Quantum Fluctuations in Interacting Many Particle Systems in LETTERS IN MATHEMATICAL PHYSICS
  • 1929-01. Beweis des Ergodensatzes und desH-Theorems in der neuen Mechanik in ZEITSCHRIFT FÜR PHYSIK A HADRONS AND NUCLEI
  • 2010-09-07. Long-time behavior of macroscopic quantum systems in THE EUROPEAN PHYSICAL JOURNAL H
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1140/epjb/e2020-10074-9

    DOI

    http://dx.doi.org/10.1140/epjb/e2020-10074-9

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1131889108


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Physics, Zhejiang Normal University, 321004, Jinhua, P.R. China", 
              "id": "http://www.grid.ac/institutes/grid.453534.0", 
              "name": [
                "Department of Physics, Zhejiang Normal University, 321004, Jinhua, P.R. China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yang", 
            "givenName": "Xinxin", 
            "id": "sg:person.013023537305.79", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013023537305.79"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Physics, Zhejiang Normal University, 321004, Jinhua, P.R. China", 
              "id": "http://www.grid.ac/institutes/grid.453534.0", 
              "name": [
                "Department of Physics, Zhejiang Normal University, 321004, Jinhua, P.R. China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Pei", 
            "id": "sg:person.0614252515.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0614252515.34"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nature06838", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020083538", 
              "https://doi.org/10.1038/nature06838"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys3215", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052952599", 
              "https://doi.org/10.1038/nphys3215"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1140/epjh/e2010-00007-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015590837", 
              "https://doi.org/10.1140/epjh/e2010-00007-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/b:math.0000043321.00896.86", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037144064", 
              "https://doi.org/10.1023/b:math.0000043321.00896.86"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01339852", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049661063", 
              "https://doi.org/10.1007/bf01339852"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2020-10-14", 
        "datePublishedReg": "2020-10-14", 
        "description": "The nonequilibrium dynamics in chaotic quantum systems denies a fully understanding up to now, even if thermalization in the long-time asymptotic state has been explained by the eigenstate thermalization hypothesis which assumes a universal form of the observable matrix elements in the eigenbasis of Hamiltonian. It was recently proposed that the density matrix elements have also a universal form, which can be used to understand the nonequilibrium dynamics at the whole time scale, from the transient regime to the long-time steady limit. In this paper, we numerically test these assumptions for density matrix in the models of spins.Graphical abstract", 
        "genre": "article", 
        "id": "sg:pub.10.1140/epjb/e2020-10074-9", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1129956", 
            "issn": [
              "1155-4304", 
              "1286-4862"
            ], 
            "name": "The European Physical Journal B", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "10", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "93"
          }
        ], 
        "keywords": [
          "chaotic quantum systems", 
          "nonequilibrium dynamics", 
          "quantum systems", 
          "density matrix", 
          "model of spins", 
          "universal form", 
          "eigenstate thermalization hypothesis", 
          "long-time asymptotic state", 
          "matrix elements", 
          "thermalization hypothesis", 
          "asymptotic states", 
          "steady limit", 
          "density matrix elements", 
          "transient regime", 
          "whole time scale", 
          "dynamics", 
          "time scales", 
          "eigenbasis", 
          "Hamiltonian", 
          "spin", 
          "matrix", 
          "thermalization", 
          "assumption", 
          "system", 
          "regime", 
          "model", 
          "form", 
          "limit", 
          "elements", 
          "state", 
          "scale", 
          "hypothesis", 
          "paper", 
          "observable matrix elements", 
          "eigenbasis of Hamiltonian", 
          "long-time steady limit", 
          "Graphical abstract Density matrix", 
          "abstract Density matrix"
        ], 
        "name": "Density matrix of chaotic quantum systems", 
        "pagination": "198", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1131889108"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1140/epjb/e2020-10074-9"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1140/epjb/e2020-10074-9", 
          "https://app.dimensions.ai/details/publication/pub.1131889108"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:55", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_842.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1140/epjb/e2020-10074-9"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2020-10074-9'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2020-10074-9'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2020-10074-9'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2020-10074-9'


     

    This table displays all metadata directly associated to this object as RDF triples.

    123 TRIPLES      22 PREDICATES      68 URIs      55 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1140/epjb/e2020-10074-9 schema:about anzsrc-for:02
    2 anzsrc-for:0202
    3 schema:author Nb801ca61f1a64c49a86cce38532396a7
    4 schema:citation sg:pub.10.1007/bf01339852
    5 sg:pub.10.1023/b:math.0000043321.00896.86
    6 sg:pub.10.1038/nature06838
    7 sg:pub.10.1038/nphys3215
    8 sg:pub.10.1140/epjh/e2010-00007-7
    9 schema:datePublished 2020-10-14
    10 schema:datePublishedReg 2020-10-14
    11 schema:description The nonequilibrium dynamics in chaotic quantum systems denies a fully understanding up to now, even if thermalization in the long-time asymptotic state has been explained by the eigenstate thermalization hypothesis which assumes a universal form of the observable matrix elements in the eigenbasis of Hamiltonian. It was recently proposed that the density matrix elements have also a universal form, which can be used to understand the nonequilibrium dynamics at the whole time scale, from the transient regime to the long-time steady limit. In this paper, we numerically test these assumptions for density matrix in the models of spins.Graphical abstract
    12 schema:genre article
    13 schema:inLanguage en
    14 schema:isAccessibleForFree true
    15 schema:isPartOf N2d2c85a26ab94e5a828b95e5650edb10
    16 N9281b7f45c9a4a5eac5361721255adbc
    17 sg:journal.1129956
    18 schema:keywords Graphical abstract Density matrix
    19 Hamiltonian
    20 abstract Density matrix
    21 assumption
    22 asymptotic states
    23 chaotic quantum systems
    24 density matrix
    25 density matrix elements
    26 dynamics
    27 eigenbasis
    28 eigenbasis of Hamiltonian
    29 eigenstate thermalization hypothesis
    30 elements
    31 form
    32 hypothesis
    33 limit
    34 long-time asymptotic state
    35 long-time steady limit
    36 matrix
    37 matrix elements
    38 model
    39 model of spins
    40 nonequilibrium dynamics
    41 observable matrix elements
    42 paper
    43 quantum systems
    44 regime
    45 scale
    46 spin
    47 state
    48 steady limit
    49 system
    50 thermalization
    51 thermalization hypothesis
    52 time scales
    53 transient regime
    54 universal form
    55 whole time scale
    56 schema:name Density matrix of chaotic quantum systems
    57 schema:pagination 198
    58 schema:productId N624278c636bf42f19cc24813bedd7b8f
    59 Nab7a96e68e4b487dbeebdbd1f4a3eed4
    60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1131889108
    61 https://doi.org/10.1140/epjb/e2020-10074-9
    62 schema:sdDatePublished 2022-01-01T18:55
    63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    64 schema:sdPublisher N715640c083414fe3a448645c20fa1f9a
    65 schema:url https://doi.org/10.1140/epjb/e2020-10074-9
    66 sgo:license sg:explorer/license/
    67 sgo:sdDataset articles
    68 rdf:type schema:ScholarlyArticle
    69 N2d2c85a26ab94e5a828b95e5650edb10 schema:issueNumber 10
    70 rdf:type schema:PublicationIssue
    71 N624278c636bf42f19cc24813bedd7b8f schema:name dimensions_id
    72 schema:value pub.1131889108
    73 rdf:type schema:PropertyValue
    74 N715640c083414fe3a448645c20fa1f9a schema:name Springer Nature - SN SciGraph project
    75 rdf:type schema:Organization
    76 N9281b7f45c9a4a5eac5361721255adbc schema:volumeNumber 93
    77 rdf:type schema:PublicationVolume
    78 N9d4b278dbdf54753bc0a54c072cca259 rdf:first sg:person.0614252515.34
    79 rdf:rest rdf:nil
    80 Nab7a96e68e4b487dbeebdbd1f4a3eed4 schema:name doi
    81 schema:value 10.1140/epjb/e2020-10074-9
    82 rdf:type schema:PropertyValue
    83 Nb801ca61f1a64c49a86cce38532396a7 rdf:first sg:person.013023537305.79
    84 rdf:rest N9d4b278dbdf54753bc0a54c072cca259
    85 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    86 schema:name Physical Sciences
    87 rdf:type schema:DefinedTerm
    88 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
    89 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
    90 rdf:type schema:DefinedTerm
    91 sg:journal.1129956 schema:issn 1155-4304
    92 1286-4862
    93 schema:name The European Physical Journal B
    94 schema:publisher Springer Nature
    95 rdf:type schema:Periodical
    96 sg:person.013023537305.79 schema:affiliation grid-institutes:grid.453534.0
    97 schema:familyName Yang
    98 schema:givenName Xinxin
    99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013023537305.79
    100 rdf:type schema:Person
    101 sg:person.0614252515.34 schema:affiliation grid-institutes:grid.453534.0
    102 schema:familyName Wang
    103 schema:givenName Pei
    104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0614252515.34
    105 rdf:type schema:Person
    106 sg:pub.10.1007/bf01339852 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049661063
    107 https://doi.org/10.1007/bf01339852
    108 rdf:type schema:CreativeWork
    109 sg:pub.10.1023/b:math.0000043321.00896.86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037144064
    110 https://doi.org/10.1023/b:math.0000043321.00896.86
    111 rdf:type schema:CreativeWork
    112 sg:pub.10.1038/nature06838 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020083538
    113 https://doi.org/10.1038/nature06838
    114 rdf:type schema:CreativeWork
    115 sg:pub.10.1038/nphys3215 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052952599
    116 https://doi.org/10.1038/nphys3215
    117 rdf:type schema:CreativeWork
    118 sg:pub.10.1140/epjh/e2010-00007-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015590837
    119 https://doi.org/10.1140/epjh/e2010-00007-7
    120 rdf:type schema:CreativeWork
    121 grid-institutes:grid.453534.0 schema:alternateName Department of Physics, Zhejiang Normal University, 321004, Jinhua, P.R. China
    122 schema:name Department of Physics, Zhejiang Normal University, 321004, Jinhua, P.R. China
    123 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...