Mott localization nurtures several competing and coexisting orders View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-09

AUTHORS

Ganapathy Baskaran

ABSTRACT

Band insulating diamond or metallic mercury differs in a fundamental fashion from materials containing Mott localized electrons. Proliferation of long range orders that compete and sometimes coexist is an important consequence of Mott localization. In this article we focus on how Mott localization creates a rich phase diagram and new physics. A projected nature of the low energy Hilbert space, as opposed to a Fermi gas like Hilbert space, underlies this. Spin, orbital and charge degree of freedom gain independence, but get quantum entangled among themselves and create novel phases. We focus on spin-half single orbital systems. Mott localization encourages entanglement of spin pairs via valence bond formation. We relate valence bond dynamics to emergent gauge fields. Emergent gauge fields in turn nurture and encourage a variety of orders, including topological orders: antiferromagnetism, spin liquids, charge, spin stripes, chiral order and robust superconducting order. More... »

PAGES

200

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1140/epjb/e2018-90355-6

DOI

http://dx.doi.org/10.1140/epjb/e2018-90355-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1106933884


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Perimeter Institute", 
          "id": "https://www.grid.ac/institutes/grid.420198.6", 
          "name": [
            "The Institute of Mathematical Sciences, C I T Campus, 600 113, Chennai, India", 
            "Perimeter Institute for Theoretical Physics, N2L 2Y5, Waterloo, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Baskaran", 
        "givenName": "Ganapathy", 
        "id": "sg:person.01064323023.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064323023.63"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevlett.78.338", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001209368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.78.338", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001209368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.84.125125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007074128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.84.125125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007074128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.64.092508", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008922230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.64.092508", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008922230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01307239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009304640", 
          "https://doi.org/10.1007/bf01307239"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01307239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009304640", 
          "https://doi.org/10.1007/bf01307239"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.109.147204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012326171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.109.147204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012326171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.56.6120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015806313"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.56.6120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015806313"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.84.3021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017771827"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.84.3021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017771827"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.60.r753", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020068857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.60.r753", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020068857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-1573(94)00086-i", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023198737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0038-1098(87)90642-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023357665"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0038-1098(87)90642-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023357665"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aop.2005.10.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025107810"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.82.4300", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033209158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.82.4300", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033209158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.58.8222", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035524265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.58.8222", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035524265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01303701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036381635", 
          "https://doi.org/10.1007/bf01303701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01303701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036381635", 
          "https://doi.org/10.1007/bf01303701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/25482", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040951971", 
          "https://doi.org/10.1038/25482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/25482", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040951971", 
          "https://doi.org/10.1038/25482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.83.3916", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044356073"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.83.3916", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044356073"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.96.16.8814", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049733710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.59.13810", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051314523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.59.13810", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051314523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.37.3664", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060545389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.37.3664", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060545389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.37.3774", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060545422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.37.3774", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060545422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.37.580", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060545747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.37.580", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060545747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.38.2926", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060547292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.38.2926", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060547292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.38.5142", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060547636"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.38.5142", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060547636"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.38.745", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060548007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.38.745", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060548007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.39.11413", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060548653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.39.11413", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060548653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.40.7391", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060552433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.40.7391", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060552433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.41.11379", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060553078"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.41.11379", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060553078"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.60.821", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060797400"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.60.821", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060797400"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.61.2376", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060797910"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.61.2376", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060797910"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.61.365", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060798142"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.61.365", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060798142"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.62.1694", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060798564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.62.1694", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060798564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.62.2873", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060798948"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.62.2873", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060798948"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.75.316", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060811996"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.75.316", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060811996"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.235.4793.1196", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062533830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0217984900000513", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062942562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/ptps.108.287", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063141963"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-09", 
    "datePublishedReg": "2018-09-01", 
    "description": "Band insulating diamond or metallic mercury differs in a fundamental fashion from materials containing Mott localized electrons. Proliferation of long range orders that compete and sometimes coexist is an important consequence of Mott localization. In this article we focus on how Mott localization creates a rich phase diagram and new physics. A projected nature of the low energy Hilbert space, as opposed to a Fermi gas like Hilbert space, underlies this. Spin, orbital and charge degree of freedom gain independence, but get quantum entangled among themselves and create novel phases. We focus on spin-half single orbital systems. Mott localization encourages entanglement of spin pairs via valence bond formation. We relate valence bond dynamics to emergent gauge fields. Emergent gauge fields in turn nurture and encourage a variety of orders, including topological orders: antiferromagnetism, spin liquids, charge, spin stripes, chiral order and robust superconducting order.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1140/epjb/e2018-90355-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1129956", 
        "issn": [
          "1155-4304", 
          "1286-4862"
        ], 
        "name": "The European Physical Journal B", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "91"
      }
    ], 
    "name": "Mott localization nurtures several competing and coexisting orders", 
    "pagination": "200", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6972ce7f9d0a42b967ca6430fbb04029c9e6fb50dec3fe5250e66c6efd1de1df"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1140/epjb/e2018-90355-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1106933884"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1140/epjb/e2018-90355-6", 
      "https://app.dimensions.ai/details/publication/pub.1106933884"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:22", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000605.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1140%2Fepjb%2Fe2018-90355-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2018-90355-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2018-90355-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2018-90355-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2018-90355-6'


 

This table displays all metadata directly associated to this object as RDF triples.

173 TRIPLES      21 PREDICATES      63 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1140/epjb/e2018-90355-6 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author Ncb56204863d54561ac3d7ce16166849e
4 schema:citation sg:pub.10.1007/bf01303701
5 sg:pub.10.1007/bf01307239
6 sg:pub.10.1038/25482
7 https://doi.org/10.1016/0038-1098(87)90642-9
8 https://doi.org/10.1016/0370-1573(94)00086-i
9 https://doi.org/10.1016/j.aop.2005.10.005
10 https://doi.org/10.1073/pnas.96.16.8814
11 https://doi.org/10.1103/physrevb.37.3664
12 https://doi.org/10.1103/physrevb.37.3774
13 https://doi.org/10.1103/physrevb.37.580
14 https://doi.org/10.1103/physrevb.38.2926
15 https://doi.org/10.1103/physrevb.38.5142
16 https://doi.org/10.1103/physrevb.38.745
17 https://doi.org/10.1103/physrevb.39.11413
18 https://doi.org/10.1103/physrevb.40.7391
19 https://doi.org/10.1103/physrevb.41.11379
20 https://doi.org/10.1103/physrevb.56.6120
21 https://doi.org/10.1103/physrevb.58.8222
22 https://doi.org/10.1103/physrevb.59.13810
23 https://doi.org/10.1103/physrevb.60.r753
24 https://doi.org/10.1103/physrevb.64.092508
25 https://doi.org/10.1103/physrevb.84.125125
26 https://doi.org/10.1103/physrevlett.109.147204
27 https://doi.org/10.1103/physrevlett.60.821
28 https://doi.org/10.1103/physrevlett.61.2376
29 https://doi.org/10.1103/physrevlett.61.365
30 https://doi.org/10.1103/physrevlett.62.1694
31 https://doi.org/10.1103/physrevlett.62.2873
32 https://doi.org/10.1103/physrevlett.75.316
33 https://doi.org/10.1103/physrevlett.78.338
34 https://doi.org/10.1103/physrevlett.82.4300
35 https://doi.org/10.1103/physrevlett.83.3916
36 https://doi.org/10.1103/physrevlett.84.3021
37 https://doi.org/10.1126/science.235.4793.1196
38 https://doi.org/10.1142/s0217984900000513
39 https://doi.org/10.1143/ptps.108.287
40 schema:datePublished 2018-09
41 schema:datePublishedReg 2018-09-01
42 schema:description Band insulating diamond or metallic mercury differs in a fundamental fashion from materials containing Mott localized electrons. Proliferation of long range orders that compete and sometimes coexist is an important consequence of Mott localization. In this article we focus on how Mott localization creates a rich phase diagram and new physics. A projected nature of the low energy Hilbert space, as opposed to a Fermi gas like Hilbert space, underlies this. Spin, orbital and charge degree of freedom gain independence, but get quantum entangled among themselves and create novel phases. We focus on spin-half single orbital systems. Mott localization encourages entanglement of spin pairs via valence bond formation. We relate valence bond dynamics to emergent gauge fields. Emergent gauge fields in turn nurture and encourage a variety of orders, including topological orders: antiferromagnetism, spin liquids, charge, spin stripes, chiral order and robust superconducting order.
43 schema:genre research_article
44 schema:inLanguage en
45 schema:isAccessibleForFree false
46 schema:isPartOf N154b43fedee44c48be939b1049bcc252
47 Nb93c38d0bbe54f669555bfa120f5b4dc
48 sg:journal.1129956
49 schema:name Mott localization nurtures several competing and coexisting orders
50 schema:pagination 200
51 schema:productId N04142261de7446bc9f6efda89b5b8e28
52 N5d61d73fa882465f98857fc816791ee4
53 Nfefe06e6baf0400ea9c808e12f9b1907
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106933884
55 https://doi.org/10.1140/epjb/e2018-90355-6
56 schema:sdDatePublished 2019-04-10T19:22
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher Nde41cad1ad014bd1a0d07ce70afab78f
59 schema:url http://link.springer.com/10.1140%2Fepjb%2Fe2018-90355-6
60 sgo:license sg:explorer/license/
61 sgo:sdDataset articles
62 rdf:type schema:ScholarlyArticle
63 N04142261de7446bc9f6efda89b5b8e28 schema:name doi
64 schema:value 10.1140/epjb/e2018-90355-6
65 rdf:type schema:PropertyValue
66 N154b43fedee44c48be939b1049bcc252 schema:volumeNumber 91
67 rdf:type schema:PublicationVolume
68 N5d61d73fa882465f98857fc816791ee4 schema:name readcube_id
69 schema:value 6972ce7f9d0a42b967ca6430fbb04029c9e6fb50dec3fe5250e66c6efd1de1df
70 rdf:type schema:PropertyValue
71 Nb93c38d0bbe54f669555bfa120f5b4dc schema:issueNumber 9
72 rdf:type schema:PublicationIssue
73 Ncb56204863d54561ac3d7ce16166849e rdf:first sg:person.01064323023.63
74 rdf:rest rdf:nil
75 Nde41cad1ad014bd1a0d07ce70afab78f schema:name Springer Nature - SN SciGraph project
76 rdf:type schema:Organization
77 Nfefe06e6baf0400ea9c808e12f9b1907 schema:name dimensions_id
78 schema:value pub.1106933884
79 rdf:type schema:PropertyValue
80 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
81 schema:name Physical Sciences
82 rdf:type schema:DefinedTerm
83 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
84 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
85 rdf:type schema:DefinedTerm
86 sg:journal.1129956 schema:issn 1155-4304
87 1286-4862
88 schema:name The European Physical Journal B
89 rdf:type schema:Periodical
90 sg:person.01064323023.63 schema:affiliation https://www.grid.ac/institutes/grid.420198.6
91 schema:familyName Baskaran
92 schema:givenName Ganapathy
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064323023.63
94 rdf:type schema:Person
95 sg:pub.10.1007/bf01303701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036381635
96 https://doi.org/10.1007/bf01303701
97 rdf:type schema:CreativeWork
98 sg:pub.10.1007/bf01307239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009304640
99 https://doi.org/10.1007/bf01307239
100 rdf:type schema:CreativeWork
101 sg:pub.10.1038/25482 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040951971
102 https://doi.org/10.1038/25482
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1016/0038-1098(87)90642-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023357665
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1016/0370-1573(94)00086-i schema:sameAs https://app.dimensions.ai/details/publication/pub.1023198737
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/j.aop.2005.10.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025107810
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1073/pnas.96.16.8814 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049733710
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1103/physrevb.37.3664 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060545389
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1103/physrevb.37.3774 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060545422
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1103/physrevb.37.580 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060545747
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1103/physrevb.38.2926 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060547292
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1103/physrevb.38.5142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060547636
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1103/physrevb.38.745 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060548007
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1103/physrevb.39.11413 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060548653
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1103/physrevb.40.7391 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060552433
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1103/physrevb.41.11379 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060553078
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1103/physrevb.56.6120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015806313
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1103/physrevb.58.8222 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035524265
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1103/physrevb.59.13810 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051314523
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1103/physrevb.60.r753 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020068857
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1103/physrevb.64.092508 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008922230
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1103/physrevb.84.125125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007074128
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1103/physrevlett.109.147204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012326171
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1103/physrevlett.60.821 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060797400
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1103/physrevlett.61.2376 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060797910
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1103/physrevlett.61.365 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060798142
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1103/physrevlett.62.1694 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060798564
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1103/physrevlett.62.2873 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060798948
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1103/physrevlett.75.316 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060811996
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1103/physrevlett.78.338 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001209368
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1103/physrevlett.82.4300 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033209158
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1103/physrevlett.83.3916 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044356073
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1103/physrevlett.84.3021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017771827
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1126/science.235.4793.1196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062533830
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1142/s0217984900000513 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062942562
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1143/ptps.108.287 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063141963
169 rdf:type schema:CreativeWork
170 https://www.grid.ac/institutes/grid.420198.6 schema:alternateName Perimeter Institute
171 schema:name Perimeter Institute for Theoretical Physics, N2L 2Y5, Waterloo, ON, Canada
172 The Institute of Mathematical Sciences, C I T Campus, 600 113, Chennai, India
173 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...