Capturing intensive and extensive DFT/TDDFT molecular properties with machine learning View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-08

AUTHORS

Wiktor Pronobis, Kristof T. Schütt, Alexandre Tkatchenko, Klaus-Robert Müller

ABSTRACT

Machine learning has been successfully applied to the prediction of chemical properties of small organic molecules such as energies or polarizabilities. Compared to these properties, the electronic excitation energies pose a much more challenging learning problem. Here, we examine the applicability of two existing machine learning methodologies to the prediction of excitation energies from time-dependent density functional theory. To this end, we systematically study the performance of various 2- and 3-body descriptors as well as the deep neural network SchNet to predict extensive as well as intensive properties such as the transition energies from the ground state to the first and second excited state. As perhaps expected current state-of-the-art machine learning techniques are more suited to predict extensive as opposed to intensive quantities. We speculate on the need to develop global descriptors that can describe both extensive and intensive properties on equal footing. More... »

PAGES

178

Identifiers

URI

http://scigraph.springernature.com/pub.10.1140/epjb/e2018-90148-y

DOI

http://dx.doi.org/10.1140/epjb/e2018-90148-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1105979612


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Technical University of Berlin", 
          "id": "https://www.grid.ac/institutes/grid.6734.6", 
          "name": [
            "Machine Learning Group, Technische Universit\u00e4t Berlin, 10587, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pronobis", 
        "givenName": "Wiktor", 
        "id": "sg:person.01324646655.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324646655.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University of Berlin", 
          "id": "https://www.grid.ac/institutes/grid.6734.6", 
          "name": [
            "Machine Learning Group, Technische Universit\u00e4t Berlin, 10587, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sch\u00fctt", 
        "givenName": "Kristof T.", 
        "id": "sg:person.014564773015.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014564773015.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Luxembourg", 
          "id": "https://www.grid.ac/institutes/grid.16008.3f", 
          "name": [
            "Physics and Materials Science Research Unit, University of Luxembourg, 1511, Luxembourg, Luxembourg"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tkatchenko", 
        "givenName": "Alexandre", 
        "id": "sg:person.01233627233.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01233627233.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Korea University", 
          "id": "https://www.grid.ac/institutes/grid.222754.4", 
          "name": [
            "Machine Learning Group, Technische Universit\u00e4t Berlin, 10587, Berlin, Germany", 
            "Max Planck Institute for Informatics, 66123, Saarbr\u00fccken, Germany", 
            "Department of Brain and Cognitive Engineering, Korea University, 136-713, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "M\u00fcller", 
        "givenName": "Klaus-Robert", 
        "id": "sg:person.01066211757.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066211757.29"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1039/b508541a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007773272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b508541a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007773272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.058301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010339771"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.058301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010339771"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4964627", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018730846"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.472933", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020195458"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.478522", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022454536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35015037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023375744", 
          "https://doi.org/10.1038/35015037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35015037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023375744", 
          "https://doi.org/10.1038/35015037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35104607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025421157", 
          "https://doi.org/10.1038/35104607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35104607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025421157", 
          "https://doi.org/10.1038/35104607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sdata.2014.22", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027444262", 
          "https://doi.org/10.1038/sdata.2014.22"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.253002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030217001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.253002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030217001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/15/9/095003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033584668"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms13890", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041423254", 
          "https://doi.org/10.1038/ncomms13890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.jpclett.5b00831", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043921708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.jctc.5b00553", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055098673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ct400195d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055424727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1508368", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057714210"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4928757", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058095196"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.88.054104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060641882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.88.054104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060641882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.104.136403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060756782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.104.136403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060756782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.52.997", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060790340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.52.997", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060790340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.146401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060833851"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.146401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060833851"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/72.914517", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061219539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/sciadv.1603015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085179433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c7sc02267k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091144003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.jctc.7b00577", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091864852"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41467-017-00839-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092102030", 
          "https://doi.org/10.1038/s41467-017-00839-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/sciadv.1701816", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099597722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41467-017-02388-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100092805", 
          "https://doi.org/10.1038/s41467-017-02388-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.5019779", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101862342"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.jctc.8b00110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103945498"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-08", 
    "datePublishedReg": "2018-08-01", 
    "description": "Machine learning has been successfully applied to the prediction of chemical properties of small organic molecules such as energies or polarizabilities. Compared to these properties, the electronic excitation energies pose a much more challenging learning problem. Here, we examine the applicability of two existing machine learning methodologies to the prediction of excitation energies from time-dependent density functional theory. To this end, we systematically study the performance of various 2- and 3-body descriptors as well as the deep neural network SchNet to predict extensive as well as intensive properties such as the transition energies from the ground state to the first and second excited state. As perhaps expected current state-of-the-art machine learning techniques are more suited to predict extensive as opposed to intensive quantities. We speculate on the need to develop global descriptors that can describe both extensive and intensive properties on equal footing.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1140/epjb/e2018-90148-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1129956", 
        "issn": [
          "1155-4304", 
          "1286-4862"
        ], 
        "name": "The European Physical Journal B", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "91"
      }
    ], 
    "name": "Capturing intensive and extensive DFT/TDDFT molecular properties with machine learning", 
    "pagination": "178", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c1eea46029c8fdef9ded425f1a1186fe2a9f1ec2e325805d71e13f52249d5d00"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1140/epjb/e2018-90148-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1105979612"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1140/epjb/e2018-90148-y", 
      "https://app.dimensions.ai/details/publication/pub.1105979612"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:22", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000348_0000000348/records_54338_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1140%2Fepjb%2Fe2018-90148-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2018-90148-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2018-90148-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2018-90148-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2018-90148-y'


 

This table displays all metadata directly associated to this object as RDF triples.

183 TRIPLES      21 PREDICATES      56 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1140/epjb/e2018-90148-y schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N78e01459898c405eb5fbe64943e5f622
4 schema:citation sg:pub.10.1038/35015037
5 sg:pub.10.1038/35104607
6 sg:pub.10.1038/ncomms13890
7 sg:pub.10.1038/s41467-017-00839-3
8 sg:pub.10.1038/s41467-017-02388-1
9 sg:pub.10.1038/sdata.2014.22
10 https://doi.org/10.1021/acs.jctc.5b00553
11 https://doi.org/10.1021/acs.jctc.7b00577
12 https://doi.org/10.1021/acs.jctc.8b00110
13 https://doi.org/10.1021/acs.jpclett.5b00831
14 https://doi.org/10.1021/ct400195d
15 https://doi.org/10.1039/b508541a
16 https://doi.org/10.1039/c7sc02267k
17 https://doi.org/10.1063/1.1508368
18 https://doi.org/10.1063/1.472933
19 https://doi.org/10.1063/1.478522
20 https://doi.org/10.1063/1.4928757
21 https://doi.org/10.1063/1.4964627
22 https://doi.org/10.1063/1.5019779
23 https://doi.org/10.1088/1367-2630/15/9/095003
24 https://doi.org/10.1103/physrevb.88.054104
25 https://doi.org/10.1103/physrevlett.104.136403
26 https://doi.org/10.1103/physrevlett.108.058301
27 https://doi.org/10.1103/physrevlett.108.253002
28 https://doi.org/10.1103/physrevlett.52.997
29 https://doi.org/10.1103/physrevlett.98.146401
30 https://doi.org/10.1109/72.914517
31 https://doi.org/10.1126/sciadv.1603015
32 https://doi.org/10.1126/sciadv.1701816
33 schema:datePublished 2018-08
34 schema:datePublishedReg 2018-08-01
35 schema:description Machine learning has been successfully applied to the prediction of chemical properties of small organic molecules such as energies or polarizabilities. Compared to these properties, the electronic excitation energies pose a much more challenging learning problem. Here, we examine the applicability of two existing machine learning methodologies to the prediction of excitation energies from time-dependent density functional theory. To this end, we systematically study the performance of various 2- and 3-body descriptors as well as the deep neural network SchNet to predict extensive as well as intensive properties such as the transition energies from the ground state to the first and second excited state. As perhaps expected current state-of-the-art machine learning techniques are more suited to predict extensive as opposed to intensive quantities. We speculate on the need to develop global descriptors that can describe both extensive and intensive properties on equal footing.
36 schema:genre research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree true
39 schema:isPartOf N4369b4e552d745539d8667dcb03360fd
40 N7f88d84af1f94a61b7db45da7b10ec6b
41 sg:journal.1129956
42 schema:name Capturing intensive and extensive DFT/TDDFT molecular properties with machine learning
43 schema:pagination 178
44 schema:productId N2168525d619a4e04b47e76212a615de9
45 N2a0700a5cb3141e7bb9cd46d0c7d2335
46 N94150c9ce1044206abb406e57bec1cb7
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105979612
48 https://doi.org/10.1140/epjb/e2018-90148-y
49 schema:sdDatePublished 2019-04-11T10:22
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher N27de26c3872744a4814e6a54f8cf61bd
52 schema:url https://link.springer.com/10.1140%2Fepjb%2Fe2018-90148-y
53 sgo:license sg:explorer/license/
54 sgo:sdDataset articles
55 rdf:type schema:ScholarlyArticle
56 N2168525d619a4e04b47e76212a615de9 schema:name doi
57 schema:value 10.1140/epjb/e2018-90148-y
58 rdf:type schema:PropertyValue
59 N27de26c3872744a4814e6a54f8cf61bd schema:name Springer Nature - SN SciGraph project
60 rdf:type schema:Organization
61 N2a0700a5cb3141e7bb9cd46d0c7d2335 schema:name dimensions_id
62 schema:value pub.1105979612
63 rdf:type schema:PropertyValue
64 N4369b4e552d745539d8667dcb03360fd schema:issueNumber 8
65 rdf:type schema:PublicationIssue
66 N55e81d7bee1e48d3a36dee66d6752609 rdf:first sg:person.014564773015.48
67 rdf:rest Nbe0a041a36b643eca97bdc58070f07f9
68 N78e01459898c405eb5fbe64943e5f622 rdf:first sg:person.01324646655.51
69 rdf:rest N55e81d7bee1e48d3a36dee66d6752609
70 N7f88d84af1f94a61b7db45da7b10ec6b schema:volumeNumber 91
71 rdf:type schema:PublicationVolume
72 N94150c9ce1044206abb406e57bec1cb7 schema:name readcube_id
73 schema:value c1eea46029c8fdef9ded425f1a1186fe2a9f1ec2e325805d71e13f52249d5d00
74 rdf:type schema:PropertyValue
75 N975fc9795fd34f7c872c13ac5ad30596 rdf:first sg:person.01066211757.29
76 rdf:rest rdf:nil
77 Nbe0a041a36b643eca97bdc58070f07f9 rdf:first sg:person.01233627233.36
78 rdf:rest N975fc9795fd34f7c872c13ac5ad30596
79 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
80 schema:name Information and Computing Sciences
81 rdf:type schema:DefinedTerm
82 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
83 schema:name Artificial Intelligence and Image Processing
84 rdf:type schema:DefinedTerm
85 sg:journal.1129956 schema:issn 1155-4304
86 1286-4862
87 schema:name The European Physical Journal B
88 rdf:type schema:Periodical
89 sg:person.01066211757.29 schema:affiliation https://www.grid.ac/institutes/grid.222754.4
90 schema:familyName Müller
91 schema:givenName Klaus-Robert
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066211757.29
93 rdf:type schema:Person
94 sg:person.01233627233.36 schema:affiliation https://www.grid.ac/institutes/grid.16008.3f
95 schema:familyName Tkatchenko
96 schema:givenName Alexandre
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01233627233.36
98 rdf:type schema:Person
99 sg:person.01324646655.51 schema:affiliation https://www.grid.ac/institutes/grid.6734.6
100 schema:familyName Pronobis
101 schema:givenName Wiktor
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324646655.51
103 rdf:type schema:Person
104 sg:person.014564773015.48 schema:affiliation https://www.grid.ac/institutes/grid.6734.6
105 schema:familyName Schütt
106 schema:givenName Kristof T.
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014564773015.48
108 rdf:type schema:Person
109 sg:pub.10.1038/35015037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023375744
110 https://doi.org/10.1038/35015037
111 rdf:type schema:CreativeWork
112 sg:pub.10.1038/35104607 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025421157
113 https://doi.org/10.1038/35104607
114 rdf:type schema:CreativeWork
115 sg:pub.10.1038/ncomms13890 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041423254
116 https://doi.org/10.1038/ncomms13890
117 rdf:type schema:CreativeWork
118 sg:pub.10.1038/s41467-017-00839-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092102030
119 https://doi.org/10.1038/s41467-017-00839-3
120 rdf:type schema:CreativeWork
121 sg:pub.10.1038/s41467-017-02388-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100092805
122 https://doi.org/10.1038/s41467-017-02388-1
123 rdf:type schema:CreativeWork
124 sg:pub.10.1038/sdata.2014.22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027444262
125 https://doi.org/10.1038/sdata.2014.22
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1021/acs.jctc.5b00553 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055098673
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1021/acs.jctc.7b00577 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091864852
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1021/acs.jctc.8b00110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103945498
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1021/acs.jpclett.5b00831 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043921708
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1021/ct400195d schema:sameAs https://app.dimensions.ai/details/publication/pub.1055424727
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1039/b508541a schema:sameAs https://app.dimensions.ai/details/publication/pub.1007773272
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1039/c7sc02267k schema:sameAs https://app.dimensions.ai/details/publication/pub.1091144003
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1063/1.1508368 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057714210
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1063/1.472933 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020195458
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1063/1.478522 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022454536
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1063/1.4928757 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058095196
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1063/1.4964627 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018730846
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1063/1.5019779 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101862342
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1088/1367-2630/15/9/095003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033584668
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1103/physrevb.88.054104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060641882
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1103/physrevlett.104.136403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060756782
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1103/physrevlett.108.058301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010339771
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1103/physrevlett.108.253002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030217001
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1103/physrevlett.52.997 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060790340
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1103/physrevlett.98.146401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060833851
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1109/72.914517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061219539
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1126/sciadv.1603015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085179433
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1126/sciadv.1701816 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099597722
172 rdf:type schema:CreativeWork
173 https://www.grid.ac/institutes/grid.16008.3f schema:alternateName University of Luxembourg
174 schema:name Physics and Materials Science Research Unit, University of Luxembourg, 1511, Luxembourg, Luxembourg
175 rdf:type schema:Organization
176 https://www.grid.ac/institutes/grid.222754.4 schema:alternateName Korea University
177 schema:name Department of Brain and Cognitive Engineering, Korea University, 136-713, Seoul, South Korea
178 Machine Learning Group, Technische Universität Berlin, 10587, Berlin, Germany
179 Max Planck Institute for Informatics, 66123, Saarbrücken, Germany
180 rdf:type schema:Organization
181 https://www.grid.ac/institutes/grid.6734.6 schema:alternateName Technical University of Berlin
182 schema:name Machine Learning Group, Technische Universität Berlin, 10587, Berlin, Germany
183 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...