Ab initio study of the (2 × 2) phase of barium on graphene View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-07

AUTHORS

Cesare Tresca, Nikolay I. Verbitskiy, Alexander Grüneis, Gianni Profeta

ABSTRACT

We present a first-principles density functional theory study on the structural, electronic and dynamical properties of a novel barium doped graphene phase. Low energy electron diffraction of barium doped graphene presents clear evidence of (2 × 2) spots induced by barium adatoms with BaC8 stoichiometry. First principles calculations reveals that the phase is thermodynamically stable but unstable to segregation towards the competitive BaC6 monolayer phase. The calculation of phonon spectrum confirms the dynamical stability of the BaC8 phase indicating its metastability, probably stabilized by doping and strain conditions due to the substrate. Barium induces a relevant doping of the graphene π states and new barium-derived hole Fermi surface at the M-point of the (2 × 2) Brillouin zone. In view of possible superconducting phase induced by foreign dopants in graphene, we studied the electron–phonon coupling of this novel (2 × 2) obtaining λ = 0.26, which excludes the stabilization of a superconducting phase. More... »

PAGES

165

Identifiers

URI

http://scigraph.springernature.com/pub.10.1140/epjb/e2018-90141-6

DOI

http://dx.doi.org/10.1140/epjb/e2018-90141-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1105597038


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Paris Institute of Nanosciences", 
          "id": "https://www.grid.ac/institutes/grid.462180.9", 
          "name": [
            "Department of Physical and Chemical Sciences, University of L\u2019Aquila, Via Vetoio 10, 67100, L\u2019Aquila, Italy", 
            "SPIN-CNR, University of L\u2019Aquila, Via Vetoio 10, 67100, L\u2019Aquila, Italy", 
            "Sorbonne Universit\u00e9, Institut des Nanosciences de Paris, UMR7588, 75252, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tresca", 
        "givenName": "Cesare", 
        "id": "sg:person.012266624423.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012266624423.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Moscow State University", 
          "id": "https://www.grid.ac/institutes/grid.14476.30", 
          "name": [
            "Faculty of Physics, University of Vienna, Strudlhofgasse 4, 1090, Vienna, Austria", 
            "II. Physikalisches Institut, Universit\u00e4t zu K\u00f6ln, Z\u00fclpicher Stra\u00dfe 77, 50937, Cologne, Germany", 
            "Department of Materials Science, Moscow State University, Leninskiye Gory 1/3, 119992, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Verbitskiy", 
        "givenName": "Nikolay I.", 
        "id": "sg:person.01141110343.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01141110343.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Cologne", 
          "id": "https://www.grid.ac/institutes/grid.6190.e", 
          "name": [
            "II. Physikalisches Institut, Universit\u00e4t zu K\u00f6ln, Z\u00fclpicher Stra\u00dfe 77, 50937, Cologne, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gr\u00fcneis", 
        "givenName": "Alexander", 
        "id": "sg:person.01000772266.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01000772266.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of L'Aquila", 
          "id": "https://www.grid.ac/institutes/grid.158820.6", 
          "name": [
            "Department of Physical and Chemical Sciences, University of L\u2019Aquila, Via Vetoio 10, 67100, L\u2019Aquila, Italy", 
            "SPIN-CNR, University of L\u2019Aquila, Via Vetoio 10, 67100, L\u2019Aquila, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Profeta", 
        "givenName": "Gianni", 
        "id": "sg:person.01324632524.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324632524.61"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nphys2181", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000430612", 
          "https://doi.org/10.1038/nphys2181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1510435112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003915389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.087003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004841960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.087003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004841960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms4493", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005272205", 
          "https://doi.org/10.1038/ncomms4493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep17700", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006806356", 
          "https://doi.org/10.1038/srep17700"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.76.064510", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006842139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.76.064510", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006842139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1557/jmr.1989.1560", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006871987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms3772", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008920568", 
          "https://doi.org/10.1038/ncomms3772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.90.014518", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010432391"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.90.014518", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010432391"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.84.014511", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011092685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.84.014511", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011092685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.84.241404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012708610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.84.241404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012708610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0008-6223(80)90048-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017212671"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0008-6223(80)90048-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017212671"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.74.094507", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017967359"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.74.094507", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017967359"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/21/39/395502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037182159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/21/39/395502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037182159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c3ra47187j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038157117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.027001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038312619"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.027001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038312619"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys0010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041281578", 
          "https://doi.org/10.1038/nphys0010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys0010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041281578", 
          "https://doi.org/10.1038/nphys0010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/11/7/073050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041726579"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/11/7/073050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041726579"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.226401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043432540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.226401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043432540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.045405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043693654"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.045405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043693654"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0038-1098(87)90355-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048464052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0038-1098(87)90355-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048464052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02396638", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048625887", 
          "https://doi.org/10.1007/bf02396638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00018738100101367", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049110862"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00018738100101367", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049110862"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn201368g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056223479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/2053-1583/3/4/045003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059182938"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.12.905", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060520605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.12.905", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060520605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.13.5188", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060521190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.13.5188", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060521190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.87.195401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060641449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.87.195401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060641449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.88.081401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060642029"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.88.081401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060642029"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.114.247201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060763736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.114.247201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060763736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.14.225", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060767828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.14.225", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060767828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.237002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060831301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.237002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060831301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.067002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060833560"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.067002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060833560"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.susc.2017.08.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090957106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.97.035309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100658656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.97.035309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100658656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature26160", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101336540", 
          "https://doi.org/10.1038/nature26160"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature26160", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101336540", 
          "https://doi.org/10.1038/nature26160"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-07", 
    "datePublishedReg": "2018-07-01", 
    "description": "We present a first-principles density functional theory study on the structural, electronic and dynamical properties of a novel barium doped graphene phase. Low energy electron diffraction of barium doped graphene presents clear evidence of (2 \u00d7 2) spots induced by barium adatoms with BaC8 stoichiometry. First principles calculations reveals that the phase is thermodynamically stable but unstable to segregation towards the competitive BaC6 monolayer phase. The calculation of phonon spectrum confirms the dynamical stability of the BaC8 phase indicating its metastability, probably stabilized by doping and strain conditions due to the substrate. Barium induces a relevant doping of the graphene \u03c0 states and new barium-derived hole Fermi surface at the M-point of the (2 \u00d7 2) Brillouin zone. In view of possible superconducting phase induced by foreign dopants in graphene, we studied the electron\u2013phonon coupling of this novel (2 \u00d7 2) obtaining \u03bb = 0.26, which excludes the stabilization of a superconducting phase.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1140/epjb/e2018-90141-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1129956", 
        "issn": [
          "1155-4304", 
          "1286-4862"
        ], 
        "name": "The European Physical Journal B", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "91"
      }
    ], 
    "name": "Ab initio study of the (2 \u00d7 2) phase of barium on graphene", 
    "pagination": "165", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1f6e855205d443021436035c357b5090e5465549eab3f2ba34bfa3f40af1e897"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1140/epjb/e2018-90141-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1105597038"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1140/epjb/e2018-90141-6", 
      "https://app.dimensions.ai/details/publication/pub.1105597038"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89807_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1140%2Fepjb%2Fe2018-90141-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2018-90141-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2018-90141-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2018-90141-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2018-90141-6'


 

This table displays all metadata directly associated to this object as RDF triples.

211 TRIPLES      21 PREDICATES      63 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1140/epjb/e2018-90141-6 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N2b198ea46c154c409db60daab600acd8
4 schema:citation sg:pub.10.1007/bf02396638
5 sg:pub.10.1038/nature26160
6 sg:pub.10.1038/ncomms3772
7 sg:pub.10.1038/ncomms4493
8 sg:pub.10.1038/nphys0010
9 sg:pub.10.1038/nphys2181
10 sg:pub.10.1038/srep17700
11 https://doi.org/10.1016/0008-6223(80)90048-2
12 https://doi.org/10.1016/0038-1098(87)90355-3
13 https://doi.org/10.1016/j.susc.2017.08.002
14 https://doi.org/10.1021/nn201368g
15 https://doi.org/10.1039/c3ra47187j
16 https://doi.org/10.1073/pnas.1510435112
17 https://doi.org/10.1080/00018738100101367
18 https://doi.org/10.1088/0953-8984/21/39/395502
19 https://doi.org/10.1088/1367-2630/11/7/073050
20 https://doi.org/10.1088/2053-1583/3/4/045003
21 https://doi.org/10.1103/physrevb.12.905
22 https://doi.org/10.1103/physrevb.13.5188
23 https://doi.org/10.1103/physrevb.74.094507
24 https://doi.org/10.1103/physrevb.76.064510
25 https://doi.org/10.1103/physrevb.81.045405
26 https://doi.org/10.1103/physrevb.84.014511
27 https://doi.org/10.1103/physrevb.84.241404
28 https://doi.org/10.1103/physrevb.87.195401
29 https://doi.org/10.1103/physrevb.88.081401
30 https://doi.org/10.1103/physrevb.90.014518
31 https://doi.org/10.1103/physrevb.97.035309
32 https://doi.org/10.1103/physrevlett.100.226401
33 https://doi.org/10.1103/physrevlett.114.247201
34 https://doi.org/10.1103/physrevlett.14.225
35 https://doi.org/10.1103/physrevlett.95.087003
36 https://doi.org/10.1103/physrevlett.95.237002
37 https://doi.org/10.1103/physrevlett.98.067002
38 https://doi.org/10.1103/physrevlett.99.027001
39 https://doi.org/10.1557/jmr.1989.1560
40 schema:datePublished 2018-07
41 schema:datePublishedReg 2018-07-01
42 schema:description We present a first-principles density functional theory study on the structural, electronic and dynamical properties of a novel barium doped graphene phase. Low energy electron diffraction of barium doped graphene presents clear evidence of (2 × 2) spots induced by barium adatoms with BaC8 stoichiometry. First principles calculations reveals that the phase is thermodynamically stable but unstable to segregation towards the competitive BaC6 monolayer phase. The calculation of phonon spectrum confirms the dynamical stability of the BaC8 phase indicating its metastability, probably stabilized by doping and strain conditions due to the substrate. Barium induces a relevant doping of the graphene π states and new barium-derived hole Fermi surface at the M-point of the (2 × 2) Brillouin zone. In view of possible superconducting phase induced by foreign dopants in graphene, we studied the electron–phonon coupling of this novel (2 × 2) obtaining λ = 0.26, which excludes the stabilization of a superconducting phase.
43 schema:genre research_article
44 schema:inLanguage en
45 schema:isAccessibleForFree false
46 schema:isPartOf N3593b7aad24743aaa9d8b64326a4296c
47 N51ba08155b6744ac86d1b55fd5add0bd
48 sg:journal.1129956
49 schema:name Ab initio study of the (2 × 2) phase of barium on graphene
50 schema:pagination 165
51 schema:productId N4a40d609a32b404da70586054feaa5fe
52 Nbebc08d32dba4cb49cb5266c1763db8d
53 Ndc86180ab7b24bee93223e631b76d39a
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105597038
55 https://doi.org/10.1140/epjb/e2018-90141-6
56 schema:sdDatePublished 2019-04-11T09:57
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher Neb9fc472fc1248a89b9cf4a16c6a422c
59 schema:url https://link.springer.com/10.1140%2Fepjb%2Fe2018-90141-6
60 sgo:license sg:explorer/license/
61 sgo:sdDataset articles
62 rdf:type schema:ScholarlyArticle
63 N10422eeb2e0f49cebb318e81289c44eb rdf:first sg:person.01324632524.61
64 rdf:rest rdf:nil
65 N2b198ea46c154c409db60daab600acd8 rdf:first sg:person.012266624423.76
66 rdf:rest Nc4ca995285ed4b55ae5f81deaf7f68b3
67 N3593b7aad24743aaa9d8b64326a4296c schema:issueNumber 7
68 rdf:type schema:PublicationIssue
69 N48f59f0dbfda449d9950aac42816b763 rdf:first sg:person.01000772266.22
70 rdf:rest N10422eeb2e0f49cebb318e81289c44eb
71 N4a40d609a32b404da70586054feaa5fe schema:name dimensions_id
72 schema:value pub.1105597038
73 rdf:type schema:PropertyValue
74 N51ba08155b6744ac86d1b55fd5add0bd schema:volumeNumber 91
75 rdf:type schema:PublicationVolume
76 Nbebc08d32dba4cb49cb5266c1763db8d schema:name readcube_id
77 schema:value 1f6e855205d443021436035c357b5090e5465549eab3f2ba34bfa3f40af1e897
78 rdf:type schema:PropertyValue
79 Nc4ca995285ed4b55ae5f81deaf7f68b3 rdf:first sg:person.01141110343.58
80 rdf:rest N48f59f0dbfda449d9950aac42816b763
81 Ndc86180ab7b24bee93223e631b76d39a schema:name doi
82 schema:value 10.1140/epjb/e2018-90141-6
83 rdf:type schema:PropertyValue
84 Neb9fc472fc1248a89b9cf4a16c6a422c schema:name Springer Nature - SN SciGraph project
85 rdf:type schema:Organization
86 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
87 schema:name Engineering
88 rdf:type schema:DefinedTerm
89 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
90 schema:name Materials Engineering
91 rdf:type schema:DefinedTerm
92 sg:journal.1129956 schema:issn 1155-4304
93 1286-4862
94 schema:name The European Physical Journal B
95 rdf:type schema:Periodical
96 sg:person.01000772266.22 schema:affiliation https://www.grid.ac/institutes/grid.6190.e
97 schema:familyName Grüneis
98 schema:givenName Alexander
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01000772266.22
100 rdf:type schema:Person
101 sg:person.01141110343.58 schema:affiliation https://www.grid.ac/institutes/grid.14476.30
102 schema:familyName Verbitskiy
103 schema:givenName Nikolay I.
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01141110343.58
105 rdf:type schema:Person
106 sg:person.012266624423.76 schema:affiliation https://www.grid.ac/institutes/grid.462180.9
107 schema:familyName Tresca
108 schema:givenName Cesare
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012266624423.76
110 rdf:type schema:Person
111 sg:person.01324632524.61 schema:affiliation https://www.grid.ac/institutes/grid.158820.6
112 schema:familyName Profeta
113 schema:givenName Gianni
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324632524.61
115 rdf:type schema:Person
116 sg:pub.10.1007/bf02396638 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048625887
117 https://doi.org/10.1007/bf02396638
118 rdf:type schema:CreativeWork
119 sg:pub.10.1038/nature26160 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101336540
120 https://doi.org/10.1038/nature26160
121 rdf:type schema:CreativeWork
122 sg:pub.10.1038/ncomms3772 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008920568
123 https://doi.org/10.1038/ncomms3772
124 rdf:type schema:CreativeWork
125 sg:pub.10.1038/ncomms4493 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005272205
126 https://doi.org/10.1038/ncomms4493
127 rdf:type schema:CreativeWork
128 sg:pub.10.1038/nphys0010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041281578
129 https://doi.org/10.1038/nphys0010
130 rdf:type schema:CreativeWork
131 sg:pub.10.1038/nphys2181 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000430612
132 https://doi.org/10.1038/nphys2181
133 rdf:type schema:CreativeWork
134 sg:pub.10.1038/srep17700 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006806356
135 https://doi.org/10.1038/srep17700
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/0008-6223(80)90048-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017212671
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/0038-1098(87)90355-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048464052
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.susc.2017.08.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090957106
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1021/nn201368g schema:sameAs https://app.dimensions.ai/details/publication/pub.1056223479
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1039/c3ra47187j schema:sameAs https://app.dimensions.ai/details/publication/pub.1038157117
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1073/pnas.1510435112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003915389
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1080/00018738100101367 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049110862
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1088/0953-8984/21/39/395502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037182159
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1088/1367-2630/11/7/073050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041726579
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1088/2053-1583/3/4/045003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059182938
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1103/physrevb.12.905 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060520605
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1103/physrevb.13.5188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060521190
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1103/physrevb.74.094507 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017967359
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1103/physrevb.76.064510 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006842139
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1103/physrevb.81.045405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043693654
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1103/physrevb.84.014511 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011092685
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1103/physrevb.84.241404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012708610
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1103/physrevb.87.195401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060641449
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1103/physrevb.88.081401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060642029
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1103/physrevb.90.014518 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010432391
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1103/physrevb.97.035309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100658656
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1103/physrevlett.100.226401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043432540
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1103/physrevlett.114.247201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060763736
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1103/physrevlett.14.225 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060767828
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1103/physrevlett.95.087003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004841960
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1103/physrevlett.95.237002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060831301
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1103/physrevlett.98.067002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060833560
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1103/physrevlett.99.027001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038312619
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1557/jmr.1989.1560 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006871987
194 rdf:type schema:CreativeWork
195 https://www.grid.ac/institutes/grid.14476.30 schema:alternateName Moscow State University
196 schema:name Department of Materials Science, Moscow State University, Leninskiye Gory 1/3, 119992, Moscow, Russia
197 Faculty of Physics, University of Vienna, Strudlhofgasse 4, 1090, Vienna, Austria
198 II. Physikalisches Institut, Universität zu Köln, Zülpicher Straße 77, 50937, Cologne, Germany
199 rdf:type schema:Organization
200 https://www.grid.ac/institutes/grid.158820.6 schema:alternateName University of L'Aquila
201 schema:name Department of Physical and Chemical Sciences, University of L’Aquila, Via Vetoio 10, 67100, L’Aquila, Italy
202 SPIN-CNR, University of L’Aquila, Via Vetoio 10, 67100, L’Aquila, Italy
203 rdf:type schema:Organization
204 https://www.grid.ac/institutes/grid.462180.9 schema:alternateName Paris Institute of Nanosciences
205 schema:name Department of Physical and Chemical Sciences, University of L’Aquila, Via Vetoio 10, 67100, L’Aquila, Italy
206 SPIN-CNR, University of L’Aquila, Via Vetoio 10, 67100, L’Aquila, Italy
207 Sorbonne Université, Institut des Nanosciences de Paris, UMR7588, 75252, Paris, France
208 rdf:type schema:Organization
209 https://www.grid.ac/institutes/grid.6190.e schema:alternateName University of Cologne
210 schema:name II. Physikalisches Institut, Universität zu Köln, Zülpicher Straße 77, 50937, Cologne, Germany
211 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...