Asymptotics of work distributions in a stochastically driven system View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-12

AUTHORS

Sreekanth K. Manikandan, Supriya Krishnamurthy

ABSTRACT

We determine the asymptotic forms of work distributions at arbitrary times T, in a class of driven stochastic systems using a theory developed by Nickelsen and Engel (EN theory) [D. Nickelsen and A. Engel, Eur. Phys. J. B 82, 207 (2011)], which is based on the contraction principle of large deviation theory. In this paper, we extend the theory, previously applied in the context of deterministically driven systems, to a model in which the driving is stochastic. The models we study are described by overdamped Langevin equations and the work distributions in path integral form, are characterised by having quadratic augmented actions. We first illustrate EN theory, for a deterministically driven system – the breathing parabola model, and show that within its framework, the Crooks fluctuation theorem manifests itself as a reflection symmetry property of a certain characteristic polynomial, which also determines the exact moment-generating-function at arbitrary times. We then extend our analysis to a stochastically driven system, studied in references [S. Sabhapandit, EPL 89, 60003 (2010); A. Pal, S. Sabhapandit, Phys. Rev. E 87, 022138 (2013); G. Verley, C. Van den Broeck, M. Esposito, New J. Phys. 16, 095001 (2014)], for both equilibrium and non-equilibrium steady state initial distributions. In both cases we obtain new analytic solutions for the asymptotic forms of (dissipated) work distributions at arbitrary T. For dissipated work in the steady state, we compare the large T asymptotic behaviour of our solution to the functional form obtained in reference [New J. Phys. 16, 095001 (2014)]. In all cases, special emphasis is placed on the computation of the pre-exponential factor and the results show excellent agreement with numerical simulations. Our solutions are exact in the low noise (β → ∞) limit. More... »

PAGES

258

References to SciGraph publications

Journal

TITLE

The European Physical Journal B

ISSUE

12

VOLUME

90

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1140/epjb/e2017-80432-9

DOI

http://dx.doi.org/10.1140/epjb/e2017-80432-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1099713800


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Stockholm University", 
          "id": "https://www.grid.ac/institutes/grid.10548.38", 
          "name": [
            "Department of Physics, Stockholm University, 106 91, Stockholm, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Manikandan", 
        "givenName": "Sreekanth K.", 
        "id": "sg:person.011416460134.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011416460134.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stockholm University", 
          "id": "https://www.grid.ac/institutes/grid.10548.38", 
          "name": [
            "Department of Physics, Stockholm University, 106 91, Stockholm, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Krishnamurthy", 
        "givenName": "Supriya", 
        "id": "sg:person.0770637044.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0770637044.27"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physreve.80.021120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002088546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.80.021120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002088546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.83.061145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002762398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.83.061145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002762398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.67.046102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003493177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.67.046102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003493177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1119/1.2794348", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004460451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/96/20005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005524136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-5468/2006/08/p08001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006189686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.69.056121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006321606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.69.056121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006321606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.87.022138", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009091709"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.87.022138", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009091709"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/16/9/095001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013119774"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0034-4885/75/12/126001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014658892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.56.5018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015429502"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.56.5018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015429502"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.88.062102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017187210"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.88.062102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017187210"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjb/e2015-60179-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018754746", 
          "https://doi.org/10.1140/epjb/e2015-60179-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1751-8113/44/30/305001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020112885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/89/60003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020958774"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/89/60003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020958774"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjb/e2011-20133-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021862015", 
          "https://doi.org/10.1140/epjb/e2011-20133-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.130601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024345743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.130601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024345743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.91.110601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029261928"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.91.110601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029261928"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.61.2361", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029892168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.61.2361", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029892168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-8949/86/05/058503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041986043"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0003-4916(03)00149-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042244382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0003-4916(03)00149-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042244382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1751-8113/46/7/075002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042265873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physrep.2009.05.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044787526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.78.2690", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050584535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.78.2690", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050584535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/jphys:019850046090146900", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056991383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-8949/2015/t165/014024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058996499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/9/9/008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059081380"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/9/9/009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059081381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.91.1505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060460948"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.91.1505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060460948"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.91.1512", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060460949"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.91.1512", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060460949"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.140601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060828159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.140601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060828159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jpsj.66.1234", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063116379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/ptps.130.17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063142441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.96.012101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090537318"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.96.012101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090537318"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1751-8121/aa9205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092144301"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-12", 
    "datePublishedReg": "2017-12-01", 
    "description": "We determine the asymptotic forms of work distributions at arbitrary times T, in a class of driven stochastic systems using a theory developed by Nickelsen and Engel (EN theory) [D. Nickelsen and A. Engel, Eur. Phys. J. B 82, 207 (2011)], which is based on the contraction principle of large deviation theory. In this paper, we extend the theory, previously applied in the context of deterministically driven systems, to a model in which the driving is stochastic. The models we study are described by overdamped Langevin equations and the work distributions in path integral form, are characterised by having quadratic augmented actions. We first illustrate EN theory, for a deterministically driven system \u2013 the breathing parabola model, and show that within its framework, the Crooks fluctuation theorem manifests itself as a reflection symmetry property of a certain characteristic polynomial, which also determines the exact moment-generating-function at arbitrary times. We then extend our analysis to a stochastically driven system, studied in references [S. Sabhapandit, EPL 89, 60003 (2010); A. Pal, S. Sabhapandit, Phys. Rev. E 87, 022138 (2013); G. Verley, C. Van den Broeck, M. Esposito, New J. Phys. 16, 095001 (2014)], for both equilibrium and non-equilibrium steady state initial distributions. In both cases we obtain new analytic solutions for the asymptotic forms of (dissipated) work distributions at arbitrary T. For dissipated work in the steady state, we compare the large T asymptotic behaviour of our solution to the functional form obtained in reference [New J. Phys. 16, 095001 (2014)]. In all cases, special emphasis is placed on the computation of the pre-exponential factor and the results show excellent agreement with numerical simulations. Our solutions are exact in the low noise (\u03b2 \u2192 \u221e) limit.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1140/epjb/e2017-80432-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1129956", 
        "issn": [
          "1155-4304", 
          "1286-4862"
        ], 
        "name": "The European Physical Journal B", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "90"
      }
    ], 
    "name": "Asymptotics of work distributions in a stochastically driven system", 
    "pagination": "258", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d4c6745b8bb5ef7677ad7ebc2388db72c40557cefcc5a818ee1eb2a0811514fc"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1140/epjb/e2017-80432-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1099713800"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1140/epjb/e2017-80432-9", 
      "https://app.dimensions.ai/details/publication/pub.1099713800"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:44", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000603.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1140/epjb/e2017-80432-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2017-80432-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2017-80432-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2017-80432-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2017-80432-9'


 

This table displays all metadata directly associated to this object as RDF triples.

175 TRIPLES      21 PREDICATES      62 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1140/epjb/e2017-80432-9 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N2941c6ff866a45598e486737f41ca1fc
4 schema:citation sg:pub.10.1140/epjb/e2011-20133-y
5 sg:pub.10.1140/epjb/e2015-60179-1
6 https://doi.org/10.1016/j.physrep.2009.05.002
7 https://doi.org/10.1016/s0003-4916(03)00149-0
8 https://doi.org/10.1051/jphys:019850046090146900
9 https://doi.org/10.1088/0031-8949/2015/t165/014024
10 https://doi.org/10.1088/0031-8949/86/05/058503
11 https://doi.org/10.1088/0034-4885/75/12/126001
12 https://doi.org/10.1088/0305-4470/9/9/008
13 https://doi.org/10.1088/0305-4470/9/9/009
14 https://doi.org/10.1088/1367-2630/16/9/095001
15 https://doi.org/10.1088/1742-5468/2006/08/p08001
16 https://doi.org/10.1088/1751-8113/44/30/305001
17 https://doi.org/10.1088/1751-8113/46/7/075002
18 https://doi.org/10.1088/1751-8121/aa9205
19 https://doi.org/10.1103/physrev.91.1505
20 https://doi.org/10.1103/physrev.91.1512
21 https://doi.org/10.1103/physreve.56.5018
22 https://doi.org/10.1103/physreve.61.2361
23 https://doi.org/10.1103/physreve.67.046102
24 https://doi.org/10.1103/physreve.69.056121
25 https://doi.org/10.1103/physreve.80.021120
26 https://doi.org/10.1103/physreve.83.061145
27 https://doi.org/10.1103/physreve.87.022138
28 https://doi.org/10.1103/physreve.88.062102
29 https://doi.org/10.1103/physreve.96.012101
30 https://doi.org/10.1103/physrevlett.78.2690
31 https://doi.org/10.1103/physrevlett.91.110601
32 https://doi.org/10.1103/physrevlett.92.130601
33 https://doi.org/10.1103/physrevlett.92.140601
34 https://doi.org/10.1119/1.2794348
35 https://doi.org/10.1143/jpsj.66.1234
36 https://doi.org/10.1143/ptps.130.17
37 https://doi.org/10.1209/0295-5075/89/60003
38 https://doi.org/10.1209/0295-5075/96/20005
39 schema:datePublished 2017-12
40 schema:datePublishedReg 2017-12-01
41 schema:description We determine the asymptotic forms of work distributions at arbitrary times T, in a class of driven stochastic systems using a theory developed by Nickelsen and Engel (EN theory) [D. Nickelsen and A. Engel, Eur. Phys. J. B 82, 207 (2011)], which is based on the contraction principle of large deviation theory. In this paper, we extend the theory, previously applied in the context of deterministically driven systems, to a model in which the driving is stochastic. The models we study are described by overdamped Langevin equations and the work distributions in path integral form, are characterised by having quadratic augmented actions. We first illustrate EN theory, for a deterministically driven system – the breathing parabola model, and show that within its framework, the Crooks fluctuation theorem manifests itself as a reflection symmetry property of a certain characteristic polynomial, which also determines the exact moment-generating-function at arbitrary times. We then extend our analysis to a stochastically driven system, studied in references [S. Sabhapandit, EPL 89, 60003 (2010); A. Pal, S. Sabhapandit, Phys. Rev. E 87, 022138 (2013); G. Verley, C. Van den Broeck, M. Esposito, New J. Phys. 16, 095001 (2014)], for both equilibrium and non-equilibrium steady state initial distributions. In both cases we obtain new analytic solutions for the asymptotic forms of (dissipated) work distributions at arbitrary T. For dissipated work in the steady state, we compare the large T asymptotic behaviour of our solution to the functional form obtained in reference [New J. Phys. 16, 095001 (2014)]. In all cases, special emphasis is placed on the computation of the pre-exponential factor and the results show excellent agreement with numerical simulations. Our solutions are exact in the low noise (β → ∞) limit.
42 schema:genre research_article
43 schema:inLanguage en
44 schema:isAccessibleForFree true
45 schema:isPartOf N072cd50e971d44a583b6dc90e5bbcb2e
46 N5e4f8874794e4143bf6fed53127e4220
47 sg:journal.1129956
48 schema:name Asymptotics of work distributions in a stochastically driven system
49 schema:pagination 258
50 schema:productId N147b7f7bcf8e4af795fa28736fce0586
51 Nb99d72bc3532466a98024c957b6632fe
52 Ne9c217a4f9b04b5db19e7387059b69b8
53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099713800
54 https://doi.org/10.1140/epjb/e2017-80432-9
55 schema:sdDatePublished 2019-04-10T17:44
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher N1a138707438a4918be55b3263f319965
58 schema:url http://link.springer.com/10.1140/epjb/e2017-80432-9
59 sgo:license sg:explorer/license/
60 sgo:sdDataset articles
61 rdf:type schema:ScholarlyArticle
62 N072cd50e971d44a583b6dc90e5bbcb2e schema:issueNumber 12
63 rdf:type schema:PublicationIssue
64 N147b7f7bcf8e4af795fa28736fce0586 schema:name doi
65 schema:value 10.1140/epjb/e2017-80432-9
66 rdf:type schema:PropertyValue
67 N1a138707438a4918be55b3263f319965 schema:name Springer Nature - SN SciGraph project
68 rdf:type schema:Organization
69 N2941c6ff866a45598e486737f41ca1fc rdf:first sg:person.011416460134.97
70 rdf:rest Nd787cede142f466abec79991115d2bf0
71 N5e4f8874794e4143bf6fed53127e4220 schema:volumeNumber 90
72 rdf:type schema:PublicationVolume
73 Nb99d72bc3532466a98024c957b6632fe schema:name dimensions_id
74 schema:value pub.1099713800
75 rdf:type schema:PropertyValue
76 Nd787cede142f466abec79991115d2bf0 rdf:first sg:person.0770637044.27
77 rdf:rest rdf:nil
78 Ne9c217a4f9b04b5db19e7387059b69b8 schema:name readcube_id
79 schema:value d4c6745b8bb5ef7677ad7ebc2388db72c40557cefcc5a818ee1eb2a0811514fc
80 rdf:type schema:PropertyValue
81 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
82 schema:name Mathematical Sciences
83 rdf:type schema:DefinedTerm
84 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
85 schema:name Pure Mathematics
86 rdf:type schema:DefinedTerm
87 sg:journal.1129956 schema:issn 1155-4304
88 1286-4862
89 schema:name The European Physical Journal B
90 rdf:type schema:Periodical
91 sg:person.011416460134.97 schema:affiliation https://www.grid.ac/institutes/grid.10548.38
92 schema:familyName Manikandan
93 schema:givenName Sreekanth K.
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011416460134.97
95 rdf:type schema:Person
96 sg:person.0770637044.27 schema:affiliation https://www.grid.ac/institutes/grid.10548.38
97 schema:familyName Krishnamurthy
98 schema:givenName Supriya
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0770637044.27
100 rdf:type schema:Person
101 sg:pub.10.1140/epjb/e2011-20133-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1021862015
102 https://doi.org/10.1140/epjb/e2011-20133-y
103 rdf:type schema:CreativeWork
104 sg:pub.10.1140/epjb/e2015-60179-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018754746
105 https://doi.org/10.1140/epjb/e2015-60179-1
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1016/j.physrep.2009.05.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044787526
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/s0003-4916(03)00149-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042244382
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1051/jphys:019850046090146900 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056991383
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1088/0031-8949/2015/t165/014024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058996499
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1088/0031-8949/86/05/058503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041986043
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1088/0034-4885/75/12/126001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014658892
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1088/0305-4470/9/9/008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059081380
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1088/0305-4470/9/9/009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059081381
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1088/1367-2630/16/9/095001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013119774
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1088/1742-5468/2006/08/p08001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006189686
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1088/1751-8113/44/30/305001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020112885
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1088/1751-8113/46/7/075002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042265873
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1088/1751-8121/aa9205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092144301
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1103/physrev.91.1505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060460948
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1103/physrev.91.1512 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060460949
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1103/physreve.56.5018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015429502
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1103/physreve.61.2361 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029892168
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1103/physreve.67.046102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003493177
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1103/physreve.69.056121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006321606
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1103/physreve.80.021120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002088546
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1103/physreve.83.061145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002762398
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1103/physreve.87.022138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009091709
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1103/physreve.88.062102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017187210
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1103/physreve.96.012101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090537318
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1103/physrevlett.78.2690 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050584535
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1103/physrevlett.91.110601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029261928
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1103/physrevlett.92.130601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024345743
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1103/physrevlett.92.140601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060828159
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1119/1.2794348 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004460451
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1143/jpsj.66.1234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063116379
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1143/ptps.130.17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063142441
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1209/0295-5075/89/60003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020958774
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1209/0295-5075/96/20005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005524136
172 rdf:type schema:CreativeWork
173 https://www.grid.ac/institutes/grid.10548.38 schema:alternateName Stockholm University
174 schema:name Department of Physics, Stockholm University, 106 91, Stockholm, Sweden
175 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...