A generalised Davydov-Scott model for polarons in linear peptide chains View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-08-16

AUTHORS

Jingxi Luo, Bernard M. A. G. Piette

ABSTRACT

We present a one-parameter family of mathematical models describing the dynamics of polarons in periodic structures, such as linear polypeptides, which, by tuning the model parameter, can be reduced to the Davydov or the Scott model. We describe the physical significance of this parameter and, in the continuum limit, we derive analytical solutions which represent stationary polarons. On a discrete lattice, we compute stationary polaron solutions numerically. We investigate polaron propagation induced by several external forcing mechanisms. We show that an electric field consisting of a constant and a periodic component can induce polaron motion with minimal energy loss. We also show that thermal fluctuations can facilitate the onset of polaron motion. Finally, we discuss the bio-physical implications of our results. More... »

PAGES

155

Identifiers

URI

http://scigraph.springernature.com/pub.10.1140/epjb/e2017-80209-2

DOI

http://dx.doi.org/10.1140/epjb/e2017-80209-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1091198016


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematical Sciences, Durham University, Lower Mountjoy, Stockton Road, DH1 3LE, Durham, UK", 
          "id": "http://www.grid.ac/institutes/grid.8250.f", 
          "name": [
            "Department of Mathematical Sciences, Durham University, Lower Mountjoy, Stockton Road, DH1 3LE, Durham, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Luo", 
        "givenName": "Jingxi", 
        "id": "sg:person.013700014452.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013700014452.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematical Sciences, Durham University, Lower Mountjoy, Stockton Road, DH1 3LE, Durham, UK", 
          "id": "http://www.grid.ac/institutes/grid.8250.f", 
          "name": [
            "Department of Mathematical Sciences, Durham University, Lower Mountjoy, Stockton Road, DH1 3LE, Durham, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Piette", 
        "givenName": "Bernard M. A. G.", 
        "id": "sg:person.014121444104.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014121444104.73"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-1-4419-6351-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030464176", 
          "https://doi.org/10.1007/978-1-4419-6351-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms11578", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000715873", 
          "https://doi.org/10.1038/ncomms11578"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01869476", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024084257", 
          "https://doi.org/10.1007/bf01869476"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-011-3340-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109716977", 
          "https://doi.org/10.1007/978-94-011-3340-1"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-08-16", 
    "datePublishedReg": "2017-08-16", 
    "description": "Abstract\nWe present a one-parameter family of mathematical models describing the dynamics of polarons in periodic structures, such as linear polypeptides, which, by tuning the model parameter, can be reduced to the Davydov or the Scott model. We describe the physical significance of this parameter and, in the continuum limit, we derive analytical solutions which represent stationary polarons. On a discrete lattice, we compute stationary polaron solutions numerically. We investigate polaron propagation induced by several external forcing mechanisms. We show that an electric field consisting of a constant and a periodic component can induce polaron motion with minimal energy loss. We also show that thermal fluctuations can facilitate the onset of polaron motion. Finally, we discuss the bio-physical implications of our results.", 
    "genre": "article", 
    "id": "sg:pub.10.1140/epjb/e2017-80209-2", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1129956", 
        "issn": [
          "1155-4304", 
          "1286-4862"
        ], 
        "name": "The European Physical Journal B", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "90"
      }
    ], 
    "keywords": [
      "one-parameter family", 
      "mathematical model", 
      "Scott model", 
      "continuum limit", 
      "stationary polarons", 
      "model parameters", 
      "discrete lattice", 
      "external forcing mechanisms", 
      "analytical solution", 
      "polaron propagation", 
      "physical significance", 
      "dynamics of polarons", 
      "periodic components", 
      "linear peptide chain", 
      "polaron motion", 
      "solution", 
      "motion", 
      "model", 
      "thermal fluctuations", 
      "minimal energy loss", 
      "parameters", 
      "dynamics", 
      "periodic structures", 
      "polaron solutions", 
      "Davydov", 
      "lattice", 
      "electric field", 
      "fluctuations", 
      "propagation", 
      "field", 
      "limit", 
      "energy loss", 
      "forcing mechanisms", 
      "results", 
      "structure", 
      "chain", 
      "family", 
      "linear polypeptide", 
      "polarons", 
      "components", 
      "significance", 
      "loss", 
      "mechanism", 
      "implications", 
      "onset", 
      "peptide chain", 
      "polypeptide", 
      "stationary polaron solutions", 
      "bio-physical implications", 
      "generalised Davydov-Scott model", 
      "Davydov-Scott model"
    ], 
    "name": "A generalised Davydov-Scott model for polarons in linear peptide chains", 
    "pagination": "155", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1091198016"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1140/epjb/e2017-80209-2"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1140/epjb/e2017-80209-2", 
      "https://app.dimensions.ai/details/publication/pub.1091198016"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_728.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1140/epjb/e2017-80209-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2017-80209-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2017-80209-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2017-80209-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2017-80209-2'


 

This table displays all metadata directly associated to this object as RDF triples.

132 TRIPLES      22 PREDICATES      80 URIs      68 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1140/epjb/e2017-80209-2 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N6709b10552ef4014aaa44d8d73832cdd
4 schema:citation sg:pub.10.1007/978-1-4419-6351-2
5 sg:pub.10.1007/978-94-011-3340-1
6 sg:pub.10.1007/bf01869476
7 sg:pub.10.1038/ncomms11578
8 schema:datePublished 2017-08-16
9 schema:datePublishedReg 2017-08-16
10 schema:description Abstract We present a one-parameter family of mathematical models describing the dynamics of polarons in periodic structures, such as linear polypeptides, which, by tuning the model parameter, can be reduced to the Davydov or the Scott model. We describe the physical significance of this parameter and, in the continuum limit, we derive analytical solutions which represent stationary polarons. On a discrete lattice, we compute stationary polaron solutions numerically. We investigate polaron propagation induced by several external forcing mechanisms. We show that an electric field consisting of a constant and a periodic component can induce polaron motion with minimal energy loss. We also show that thermal fluctuations can facilitate the onset of polaron motion. Finally, we discuss the bio-physical implications of our results.
11 schema:genre article
12 schema:inLanguage en
13 schema:isAccessibleForFree true
14 schema:isPartOf N8d2bac0058c14ef889b0ba7cf5aafb48
15 Ncac34fdfddde481c8b1f1c56c383dc6e
16 sg:journal.1129956
17 schema:keywords Davydov
18 Davydov-Scott model
19 Scott model
20 analytical solution
21 bio-physical implications
22 chain
23 components
24 continuum limit
25 discrete lattice
26 dynamics
27 dynamics of polarons
28 electric field
29 energy loss
30 external forcing mechanisms
31 family
32 field
33 fluctuations
34 forcing mechanisms
35 generalised Davydov-Scott model
36 implications
37 lattice
38 limit
39 linear peptide chain
40 linear polypeptide
41 loss
42 mathematical model
43 mechanism
44 minimal energy loss
45 model
46 model parameters
47 motion
48 one-parameter family
49 onset
50 parameters
51 peptide chain
52 periodic components
53 periodic structures
54 physical significance
55 polaron motion
56 polaron propagation
57 polaron solutions
58 polarons
59 polypeptide
60 propagation
61 results
62 significance
63 solution
64 stationary polaron solutions
65 stationary polarons
66 structure
67 thermal fluctuations
68 schema:name A generalised Davydov-Scott model for polarons in linear peptide chains
69 schema:pagination 155
70 schema:productId N0160765e0bd44799a252896dee46e0c6
71 Nce5abe69fda5469ab5a6426cbb7c648a
72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091198016
73 https://doi.org/10.1140/epjb/e2017-80209-2
74 schema:sdDatePublished 2021-11-01T18:28
75 schema:sdLicense https://scigraph.springernature.com/explorer/license/
76 schema:sdPublisher Neca7442caa3244d6a01c3cdfb9895027
77 schema:url https://doi.org/10.1140/epjb/e2017-80209-2
78 sgo:license sg:explorer/license/
79 sgo:sdDataset articles
80 rdf:type schema:ScholarlyArticle
81 N0160765e0bd44799a252896dee46e0c6 schema:name doi
82 schema:value 10.1140/epjb/e2017-80209-2
83 rdf:type schema:PropertyValue
84 N424c09fb2a54483ab495b17422d0a3eb rdf:first sg:person.014121444104.73
85 rdf:rest rdf:nil
86 N6709b10552ef4014aaa44d8d73832cdd rdf:first sg:person.013700014452.76
87 rdf:rest N424c09fb2a54483ab495b17422d0a3eb
88 N8d2bac0058c14ef889b0ba7cf5aafb48 schema:volumeNumber 90
89 rdf:type schema:PublicationVolume
90 Ncac34fdfddde481c8b1f1c56c383dc6e schema:issueNumber 8
91 rdf:type schema:PublicationIssue
92 Nce5abe69fda5469ab5a6426cbb7c648a schema:name dimensions_id
93 schema:value pub.1091198016
94 rdf:type schema:PropertyValue
95 Neca7442caa3244d6a01c3cdfb9895027 schema:name Springer Nature - SN SciGraph project
96 rdf:type schema:Organization
97 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
98 schema:name Mathematical Sciences
99 rdf:type schema:DefinedTerm
100 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
101 schema:name Pure Mathematics
102 rdf:type schema:DefinedTerm
103 sg:journal.1129956 schema:issn 1155-4304
104 1286-4862
105 schema:name The European Physical Journal B
106 schema:publisher Springer Nature
107 rdf:type schema:Periodical
108 sg:person.013700014452.76 schema:affiliation grid-institutes:grid.8250.f
109 schema:familyName Luo
110 schema:givenName Jingxi
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013700014452.76
112 rdf:type schema:Person
113 sg:person.014121444104.73 schema:affiliation grid-institutes:grid.8250.f
114 schema:familyName Piette
115 schema:givenName Bernard M. A. G.
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014121444104.73
117 rdf:type schema:Person
118 sg:pub.10.1007/978-1-4419-6351-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030464176
119 https://doi.org/10.1007/978-1-4419-6351-2
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/978-94-011-3340-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109716977
122 https://doi.org/10.1007/978-94-011-3340-1
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/bf01869476 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024084257
125 https://doi.org/10.1007/bf01869476
126 rdf:type schema:CreativeWork
127 sg:pub.10.1038/ncomms11578 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000715873
128 https://doi.org/10.1038/ncomms11578
129 rdf:type schema:CreativeWork
130 grid-institutes:grid.8250.f schema:alternateName Department of Mathematical Sciences, Durham University, Lower Mountjoy, Stockton Road, DH1 3LE, Durham, UK
131 schema:name Department of Mathematical Sciences, Durham University, Lower Mountjoy, Stockton Road, DH1 3LE, Durham, UK
132 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...