Mutual influence of uniaxial tensile strain and point defect pattern on electronic states in graphene View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-06-14

AUTHORS

Iyor Yu. Sagalianov, Taras M. Radchenko, Yuriy I. Prylutskyy, Valentyn A. Tatarenko, Pawel Szroeder

ABSTRACT

The study deals with electronic properties of uniaxially stressed mono- and multi-layer graphene sheets with various kinds of imperfection: point defects modelled as resonant (neutral) adsorbed atoms or molecules, vacancies, charged impurities, and local distortions. The presence of randomly distributed defects in a strained graphene counteract the band-gap opening and even can suppress the gap occurs when they are absent. However, impurity ordering contributes to the band gap appearance and thereby re-opens the gap being suppressed by random dopants in graphene stretched along zigzag-edge direction. The band gap is found to be non-monotonic with strain in case of mutual action of defect ordering and zigzag deformation. Herewith, the minimal tensile strain required for the band-gap opening (≈12.5%) is smaller than that for defect-free graphene (≈23%), and band gap energy reaches the value predicted for maximal nondestructive strains in the pristine graphene. Effective manipulating the band gap in graphene requires balanced content of ordered dopants: their concentration should be sufficient for a significant sublattice asymmetry effect, but not so much that they may suppress the band gap or transform it into the “quasi- (or pseudo-) gap”. More... »

PAGES

112

Identifiers

URI

http://scigraph.springernature.com/pub.10.1140/epjb/e2017-80091-x

DOI

http://dx.doi.org/10.1140/epjb/e2017-80091-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1085994092


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Dept. of General Physics, Taras Shevchenko National University of Kyiv, 64 Volodymyrska Street, 03022, Kyiv, Ukraine", 
          "id": "http://www.grid.ac/institutes/grid.34555.32", 
          "name": [
            "Dept. of General Physics, Taras Shevchenko National University of Kyiv, 64 Volodymyrska Street, 03022, Kyiv, Ukraine"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sagalianov", 
        "givenName": "Iyor Yu.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dept. of Metallic State Theory, G. V. Kurdyumov Institute for Metal Physics of N.A.S. of Ukraine, 36 Academician Vernadsky Boulevard, 03142, Kyiv, Ukraine", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Dept. of Metallic State Theory, G. V. Kurdyumov Institute for Metal Physics of N.A.S. of Ukraine, 36 Academician Vernadsky Boulevard, 03142, Kyiv, Ukraine"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Radchenko", 
        "givenName": "Taras M.", 
        "id": "sg:person.013174766433.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013174766433.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dept. of Biophysics, Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv, 64 Volodymyrska Street, UA-03022, Kyiv, Ukraine", 
          "id": "http://www.grid.ac/institutes/grid.34555.32", 
          "name": [
            "Dept. of Biophysics, Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv, 64 Volodymyrska Street, UA-03022, Kyiv, Ukraine"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Prylutskyy", 
        "givenName": "Yuriy I.", 
        "id": "sg:person.0761452727.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761452727.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dept. of Metallic State Theory, G. V. Kurdyumov Institute for Metal Physics of N.A.S. of Ukraine, 36 Academician Vernadsky Boulevard, 03142, Kyiv, Ukraine", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Dept. of Metallic State Theory, G. V. Kurdyumov Institute for Metal Physics of N.A.S. of Ukraine, 36 Academician Vernadsky Boulevard, 03142, Kyiv, Ukraine"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tatarenko", 
        "givenName": "Valentyn A.", 
        "id": "sg:person.010750316705.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010750316705.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Physics, Kazimierz Wielki University, Powsta\u0144c\u00f3w Wielkopolskich 2, 85-090, Bydgoszcz, Poland", 
          "id": "http://www.grid.ac/institutes/grid.412085.a", 
          "name": [
            "Institute of Physics, Kazimierz Wielki University, Powsta\u0144c\u00f3w Wielkopolskich 2, 85-090, Bydgoszcz, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Szroeder", 
        "givenName": "Pawel", 
        "id": "sg:person.015547633667.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015547633667.14"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature07719", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010521124", 
          "https://doi.org/10.1038/nature07719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2009.191", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039719415", 
          "https://doi.org/10.1038/nnano.2009.191"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036371302", 
          "https://doi.org/10.1038/nmat2003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011191271", 
          "https://doi.org/10.1038/nphys1420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys3183", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023669482", 
          "https://doi.org/10.1038/nphys3183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032754432", 
          "https://doi.org/10.1038/nature07094"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2010.8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005102686", 
          "https://doi.org/10.1038/nnano.2010.8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05545", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030811740", 
          "https://doi.org/10.1038/nature05545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/344524a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012999885", 
          "https://doi.org/10.1038/344524a0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-06-14", 
    "datePublishedReg": "2017-06-14", 
    "description": "Abstract\nThe study deals with electronic properties of uniaxially stressed mono- and multi-layer graphene sheets with various kinds of imperfection: point defects modelled as resonant (neutral) adsorbed atoms or molecules, vacancies, charged impurities, and local distortions. The presence of randomly distributed defects in a strained graphene counteract the band-gap opening and even can suppress the gap occurs when they are absent. However, impurity ordering contributes to the band gap appearance and thereby re-opens the gap being suppressed by random dopants in graphene stretched along zigzag-edge direction. The band gap is found to be non-monotonic with strain in case of mutual action of defect ordering and zigzag deformation. Herewith, the minimal tensile strain required for the band-gap opening (\u224812.5%) is smaller than that for defect-free graphene (\u224823%), and band gap energy reaches the value predicted for maximal nondestructive strains in the pristine graphene. Effective manipulating the band gap in graphene requires balanced content of ordered dopants: their concentration should be sufficient for a significant sublattice asymmetry effect, but not so much that they may suppress the band gap or transform it into the \u201cquasi- (or pseudo-) gap\u201d.", 
    "genre": "article", 
    "id": "sg:pub.10.1140/epjb/e2017-80091-x", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1129956", 
        "issn": [
          "1155-4304", 
          "1286-4862"
        ], 
        "name": "The European Physical Journal B", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "90"
      }
    ], 
    "keywords": [
      "band gap opening", 
      "band gap", 
      "multi-layer graphene sheets", 
      "defect-free graphene", 
      "zigzag-edge direction", 
      "band gap energy", 
      "pristine graphene", 
      "graphene sheets", 
      "tensile strain", 
      "graphene", 
      "uniaxial tensile strain", 
      "gap energy", 
      "strained graphene", 
      "electronic properties", 
      "dopants", 
      "point defects", 
      "random dopants", 
      "zigzag deformation", 
      "electronic states", 
      "gap appearance", 
      "defect ordering", 
      "vacancies", 
      "impurities", 
      "gap", 
      "kinds of imperfections", 
      "sheets", 
      "defect patterns", 
      "properties", 
      "strains", 
      "defects", 
      "energy", 
      "balanced content", 
      "imperfections", 
      "local distortion", 
      "distortion", 
      "atoms", 
      "molecules", 
      "concentration", 
      "ordering", 
      "kind", 
      "herewith", 
      "mono", 
      "direction", 
      "presence", 
      "deformation", 
      "content", 
      "effect", 
      "opening", 
      "values", 
      "state", 
      "patterns", 
      "mutual action", 
      "influence", 
      "mutual influence", 
      "asymmetry effect", 
      "study", 
      "appearance", 
      "cases", 
      "contributes", 
      "action"
    ], 
    "name": "Mutual influence of uniaxial tensile strain and point defect pattern on electronic states in graphene", 
    "pagination": "112", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1085994092"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1140/epjb/e2017-80091-x"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1140/epjb/e2017-80091-x", 
      "https://app.dimensions.ai/details/publication/pub.1085994092"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:43", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_755.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1140/epjb/e2017-80091-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2017-80091-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2017-80091-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2017-80091-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2017-80091-x'


 

This table displays all metadata directly associated to this object as RDF triples.

188 TRIPLES      21 PREDICATES      93 URIs      76 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1140/epjb/e2017-80091-x schema:about anzsrc-for:01
2 anzsrc-for:02
3 schema:author N15d5b6a8371540b494924ddaccec58fc
4 schema:citation sg:pub.10.1038/344524a0
5 sg:pub.10.1038/nature05545
6 sg:pub.10.1038/nature07094
7 sg:pub.10.1038/nature07719
8 sg:pub.10.1038/nmat2003
9 sg:pub.10.1038/nnano.2009.191
10 sg:pub.10.1038/nnano.2010.8
11 sg:pub.10.1038/nphys1420
12 sg:pub.10.1038/nphys3183
13 schema:datePublished 2017-06-14
14 schema:datePublishedReg 2017-06-14
15 schema:description Abstract The study deals with electronic properties of uniaxially stressed mono- and multi-layer graphene sheets with various kinds of imperfection: point defects modelled as resonant (neutral) adsorbed atoms or molecules, vacancies, charged impurities, and local distortions. The presence of randomly distributed defects in a strained graphene counteract the band-gap opening and even can suppress the gap occurs when they are absent. However, impurity ordering contributes to the band gap appearance and thereby re-opens the gap being suppressed by random dopants in graphene stretched along zigzag-edge direction. The band gap is found to be non-monotonic with strain in case of mutual action of defect ordering and zigzag deformation. Herewith, the minimal tensile strain required for the band-gap opening (≈12.5%) is smaller than that for defect-free graphene (≈23%), and band gap energy reaches the value predicted for maximal nondestructive strains in the pristine graphene. Effective manipulating the band gap in graphene requires balanced content of ordered dopants: their concentration should be sufficient for a significant sublattice asymmetry effect, but not so much that they may suppress the band gap or transform it into the “quasi- (or pseudo-) gap”.
16 schema:genre article
17 schema:isAccessibleForFree false
18 schema:isPartOf N1b2616a30a6742d58d8b4be99cd053c5
19 Na55576397e924e8fab2c2e5569c92b99
20 sg:journal.1129956
21 schema:keywords action
22 appearance
23 asymmetry effect
24 atoms
25 balanced content
26 band gap
27 band gap energy
28 band gap opening
29 cases
30 concentration
31 content
32 contributes
33 defect ordering
34 defect patterns
35 defect-free graphene
36 defects
37 deformation
38 direction
39 distortion
40 dopants
41 effect
42 electronic properties
43 electronic states
44 energy
45 gap
46 gap appearance
47 gap energy
48 graphene
49 graphene sheets
50 herewith
51 imperfections
52 impurities
53 influence
54 kind
55 kinds of imperfections
56 local distortion
57 molecules
58 mono
59 multi-layer graphene sheets
60 mutual action
61 mutual influence
62 opening
63 ordering
64 patterns
65 point defects
66 presence
67 pristine graphene
68 properties
69 random dopants
70 sheets
71 state
72 strained graphene
73 strains
74 study
75 tensile strain
76 uniaxial tensile strain
77 vacancies
78 values
79 zigzag deformation
80 zigzag-edge direction
81 schema:name Mutual influence of uniaxial tensile strain and point defect pattern on electronic states in graphene
82 schema:pagination 112
83 schema:productId Nc55fad6b1c7943a48a68af5dc355c07a
84 Ndabde8c92406498b928c2e83643404d5
85 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085994092
86 https://doi.org/10.1140/epjb/e2017-80091-x
87 schema:sdDatePublished 2022-10-01T06:43
88 schema:sdLicense https://scigraph.springernature.com/explorer/license/
89 schema:sdPublisher Nbed56b44340541c3b4910dceba0ca4f9
90 schema:url https://doi.org/10.1140/epjb/e2017-80091-x
91 sgo:license sg:explorer/license/
92 sgo:sdDataset articles
93 rdf:type schema:ScholarlyArticle
94 N15d5b6a8371540b494924ddaccec58fc rdf:first N1778b8ecdaaa44fcb4c4b3d234825858
95 rdf:rest N68c6216f89bb485cb39a54453ecba522
96 N1778b8ecdaaa44fcb4c4b3d234825858 schema:affiliation grid-institutes:grid.34555.32
97 schema:familyName Sagalianov
98 schema:givenName Iyor Yu.
99 rdf:type schema:Person
100 N1b2616a30a6742d58d8b4be99cd053c5 schema:volumeNumber 90
101 rdf:type schema:PublicationVolume
102 N3c04c60c514a4fa6a3032122177dd687 rdf:first sg:person.015547633667.14
103 rdf:rest rdf:nil
104 N68c6216f89bb485cb39a54453ecba522 rdf:first sg:person.013174766433.06
105 rdf:rest Nef2a941125194067a715dbdf8b79e987
106 Na55576397e924e8fab2c2e5569c92b99 schema:issueNumber 6
107 rdf:type schema:PublicationIssue
108 Nbed56b44340541c3b4910dceba0ca4f9 schema:name Springer Nature - SN SciGraph project
109 rdf:type schema:Organization
110 Nc55fad6b1c7943a48a68af5dc355c07a schema:name doi
111 schema:value 10.1140/epjb/e2017-80091-x
112 rdf:type schema:PropertyValue
113 Ndabde8c92406498b928c2e83643404d5 schema:name dimensions_id
114 schema:value pub.1085994092
115 rdf:type schema:PropertyValue
116 Ndcf8b931743e43c1907015cf5341ebec rdf:first sg:person.010750316705.75
117 rdf:rest N3c04c60c514a4fa6a3032122177dd687
118 Nef2a941125194067a715dbdf8b79e987 rdf:first sg:person.0761452727.99
119 rdf:rest Ndcf8b931743e43c1907015cf5341ebec
120 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
121 schema:name Mathematical Sciences
122 rdf:type schema:DefinedTerm
123 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
124 schema:name Physical Sciences
125 rdf:type schema:DefinedTerm
126 sg:journal.1129956 schema:issn 1155-4304
127 1286-4862
128 schema:name The European Physical Journal B
129 schema:publisher Springer Nature
130 rdf:type schema:Periodical
131 sg:person.010750316705.75 schema:affiliation grid-institutes:None
132 schema:familyName Tatarenko
133 schema:givenName Valentyn A.
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010750316705.75
135 rdf:type schema:Person
136 sg:person.013174766433.06 schema:affiliation grid-institutes:None
137 schema:familyName Radchenko
138 schema:givenName Taras M.
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013174766433.06
140 rdf:type schema:Person
141 sg:person.015547633667.14 schema:affiliation grid-institutes:grid.412085.a
142 schema:familyName Szroeder
143 schema:givenName Pawel
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015547633667.14
145 rdf:type schema:Person
146 sg:person.0761452727.99 schema:affiliation grid-institutes:grid.34555.32
147 schema:familyName Prylutskyy
148 schema:givenName Yuriy I.
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761452727.99
150 rdf:type schema:Person
151 sg:pub.10.1038/344524a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012999885
152 https://doi.org/10.1038/344524a0
153 rdf:type schema:CreativeWork
154 sg:pub.10.1038/nature05545 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030811740
155 https://doi.org/10.1038/nature05545
156 rdf:type schema:CreativeWork
157 sg:pub.10.1038/nature07094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032754432
158 https://doi.org/10.1038/nature07094
159 rdf:type schema:CreativeWork
160 sg:pub.10.1038/nature07719 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010521124
161 https://doi.org/10.1038/nature07719
162 rdf:type schema:CreativeWork
163 sg:pub.10.1038/nmat2003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036371302
164 https://doi.org/10.1038/nmat2003
165 rdf:type schema:CreativeWork
166 sg:pub.10.1038/nnano.2009.191 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039719415
167 https://doi.org/10.1038/nnano.2009.191
168 rdf:type schema:CreativeWork
169 sg:pub.10.1038/nnano.2010.8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005102686
170 https://doi.org/10.1038/nnano.2010.8
171 rdf:type schema:CreativeWork
172 sg:pub.10.1038/nphys1420 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011191271
173 https://doi.org/10.1038/nphys1420
174 rdf:type schema:CreativeWork
175 sg:pub.10.1038/nphys3183 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023669482
176 https://doi.org/10.1038/nphys3183
177 rdf:type schema:CreativeWork
178 grid-institutes:None schema:alternateName Dept. of Metallic State Theory, G. V. Kurdyumov Institute for Metal Physics of N.A.S. of Ukraine, 36 Academician Vernadsky Boulevard, 03142, Kyiv, Ukraine
179 schema:name Dept. of Metallic State Theory, G. V. Kurdyumov Institute for Metal Physics of N.A.S. of Ukraine, 36 Academician Vernadsky Boulevard, 03142, Kyiv, Ukraine
180 rdf:type schema:Organization
181 grid-institutes:grid.34555.32 schema:alternateName Dept. of Biophysics, Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv, 64 Volodymyrska Street, UA-03022, Kyiv, Ukraine
182 Dept. of General Physics, Taras Shevchenko National University of Kyiv, 64 Volodymyrska Street, 03022, Kyiv, Ukraine
183 schema:name Dept. of Biophysics, Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv, 64 Volodymyrska Street, UA-03022, Kyiv, Ukraine
184 Dept. of General Physics, Taras Shevchenko National University of Kyiv, 64 Volodymyrska Street, 03022, Kyiv, Ukraine
185 rdf:type schema:Organization
186 grid-institutes:grid.412085.a schema:alternateName Institute of Physics, Kazimierz Wielki University, Powstańców Wielkopolskich 2, 85-090, Bydgoszcz, Poland
187 schema:name Institute of Physics, Kazimierz Wielki University, Powstańców Wielkopolskich 2, 85-090, Bydgoszcz, Poland
188 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...