Freed by interaction kinetic states in the Harper model View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-12

AUTHORS

Klaus M. Frahm, Dima L. Shepelyansky

ABSTRACT

We study the problem of two interacting particles in a one-dimensional quasiperiodic lattice of the Harper model. We show that a short or long range interaction between particles leads to emergence of delocalized pairs in the non-interacting localized phase. The properties of these freed by interaction kinetic states (FIKS) are analyzed numerically including the advanced Arnoldi method. We find that the number of sites populated by FIKS pairs grows algebraically with the system size with the maximal exponent b = 1, up to a largest lattice size N = 10 946 reached in our numerical simulations, thus corresponding to a complete delocalization of pairs. For delocalized FIKS pairs the spectral properties of such quasiperiodic operators represent a deep mathematical problem. We argue that FIKS pairs can be detected in the framework of recent cold atom experiments [M. Schreiber et al., Science 349, 842 (2015)] by a simple setup modification. We also discuss possible implications of FIKS pairs for electron transport in the regime of charge-density wave and high Tc superconductivity. More... »

PAGES

337

Identifiers

URI

http://scigraph.springernature.com/pub.10.1140/epjb/e2015-60733-9

DOI

http://dx.doi.org/10.1140/epjb/e2015-60733-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020159028


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Toulouse", 
          "id": "https://www.grid.ac/institutes/grid.11417.32", 
          "name": [
            "Laboratoire de Physique Th\u00e9orique du CNRS, IRSAMC, Universit\u00e9 de Toulouse, 31062, Toulouse, UPS, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Frahm", 
        "givenName": "Klaus M.", 
        "id": "sg:person.013240507225.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013240507225.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Toulouse", 
          "id": "https://www.grid.ac/institutes/grid.11417.32", 
          "name": [
            "Laboratoire de Physique Th\u00e9orique du CNRS, IRSAMC, Universit\u00e9 de Toulouse, 31062, Toulouse, UPS, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shepelyansky", 
        "givenName": "Dima L.", 
        "id": "sg:person.01047545554.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01047545554.02"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1140/epjb/e2010-00190-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002035374", 
          "https://doi.org/10.1140/epjb/e2010-00190-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjb/e2010-00190-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002035374", 
          "https://doi.org/10.1140/epjb/e2010-00190-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys2498", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002347375", 
          "https://doi.org/10.1038/nphys2498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-2789(98)00230-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002378300"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.4752", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007442670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.4752", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007442670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/98/66002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007814414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.87.066601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008908584"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.87.066601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008908584"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.76.491", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012123011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.76.491", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012123011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.109.155306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021126638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.109.155306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021126638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature14165", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022690485", 
          "https://doi.org/10.1038/nature14165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/31/3/008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023429946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s100510050866", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026030659", 
          "https://doi.org/10.1007/s100510050866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.54.14896", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029972508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.54.14896", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029972508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.106.230403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032357119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.106.230403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032357119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048840212", 
          "https://doi.org/10.1038/nature07071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-1573(85)90088-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050915108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-1573(85)90088-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050915108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.75.1598", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053524770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.75.1598", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053524770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002220100196", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053629111", 
          "https://doi.org/10.1007/s002220100196"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0370-1298/68/10/304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059091325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/qam/42792", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059348552"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.14.2239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060521465"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.14.2239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060521465"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.50.1420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060572906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.50.1420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060572906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.66.1651", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060802226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.66.1651", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060802226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.67.1377", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060803064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.67.1377", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060803064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.73.2607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060809857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.73.2607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060809857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aaa7432", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062665386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/30/7/005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064230571"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/121066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069397527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4249/scholarpedia.10462", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072400898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4249/scholarpedia.3550", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072401415"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-12", 
    "datePublishedReg": "2015-12-01", 
    "description": "We study the problem of two interacting particles in a one-dimensional quasiperiodic lattice of the Harper model. We show that a short or long range interaction between particles leads to emergence of delocalized pairs in the non-interacting localized phase. The properties of these freed by interaction kinetic states (FIKS) are analyzed numerically including the advanced Arnoldi method. We find that the number of sites populated by FIKS pairs grows algebraically with the system size with the maximal exponent b = 1, up to a largest lattice size N = 10 946 reached in our numerical simulations, thus corresponding to a complete delocalization of pairs. For delocalized FIKS pairs the spectral properties of such quasiperiodic operators represent a deep mathematical problem. We argue that FIKS pairs can be detected in the framework of recent cold atom experiments [M. Schreiber et al., Science 349, 842 (2015)] by a simple setup modification. We also discuss possible implications of FIKS pairs for electron transport in the regime of charge-density wave and high Tc superconductivity.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1140/epjb/e2015-60733-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1129956", 
        "issn": [
          "1155-4304", 
          "1286-4862"
        ], 
        "name": "The European Physical Journal B", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "88"
      }
    ], 
    "name": "Freed by interaction kinetic states in the Harper model", 
    "pagination": "337", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "600d03f49f967a9eb27860617d84d4a4c70a30cea3a79f4653f523a7ce3067e0"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1140/epjb/e2015-60733-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020159028"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1140/epjb/e2015-60733-9", 
      "https://app.dimensions.ai/details/publication/pub.1020159028"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000499.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1140/epjb/e2015-60733-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2015-60733-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2015-60733-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2015-60733-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2015-60733-9'


 

This table displays all metadata directly associated to this object as RDF triples.

161 TRIPLES      21 PREDICATES      56 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1140/epjb/e2015-60733-9 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author N29a74b9c85124e1f92898ee7d937bb0c
4 schema:citation sg:pub.10.1007/s002220100196
5 sg:pub.10.1007/s100510050866
6 sg:pub.10.1038/nature07071
7 sg:pub.10.1038/nature14165
8 sg:pub.10.1038/nphys2498
9 sg:pub.10.1140/epjb/e2010-00190-6
10 https://doi.org/10.1016/0370-1573(85)90088-2
11 https://doi.org/10.1016/s0167-2789(98)00230-9
12 https://doi.org/10.1088/0370-1298/68/10/304
13 https://doi.org/10.1090/qam/42792
14 https://doi.org/10.1103/physrevb.14.2239
15 https://doi.org/10.1103/physrevb.50.1420
16 https://doi.org/10.1103/physrevb.54.14896
17 https://doi.org/10.1103/physrevlett.106.230403
18 https://doi.org/10.1103/physrevlett.109.155306
19 https://doi.org/10.1103/physrevlett.66.1651
20 https://doi.org/10.1103/physrevlett.67.1377
21 https://doi.org/10.1103/physrevlett.73.2607
22 https://doi.org/10.1103/physrevlett.75.1598
23 https://doi.org/10.1103/physrevlett.76.491
24 https://doi.org/10.1103/physrevlett.77.4752
25 https://doi.org/10.1103/physrevlett.87.066601
26 https://doi.org/10.1126/science.aaa7432
27 https://doi.org/10.1209/0295-5075/30/7/005
28 https://doi.org/10.1209/0295-5075/31/3/008
29 https://doi.org/10.1209/0295-5075/98/66002
30 https://doi.org/10.2307/121066
31 https://doi.org/10.4249/scholarpedia.10462
32 https://doi.org/10.4249/scholarpedia.3550
33 schema:datePublished 2015-12
34 schema:datePublishedReg 2015-12-01
35 schema:description We study the problem of two interacting particles in a one-dimensional quasiperiodic lattice of the Harper model. We show that a short or long range interaction between particles leads to emergence of delocalized pairs in the non-interacting localized phase. The properties of these freed by interaction kinetic states (FIKS) are analyzed numerically including the advanced Arnoldi method. We find that the number of sites populated by FIKS pairs grows algebraically with the system size with the maximal exponent b = 1, up to a largest lattice size N = 10 946 reached in our numerical simulations, thus corresponding to a complete delocalization of pairs. For delocalized FIKS pairs the spectral properties of such quasiperiodic operators represent a deep mathematical problem. We argue that FIKS pairs can be detected in the framework of recent cold atom experiments [M. Schreiber et al., Science 349, 842 (2015)] by a simple setup modification. We also discuss possible implications of FIKS pairs for electron transport in the regime of charge-density wave and high Tc superconductivity.
36 schema:genre research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree true
39 schema:isPartOf Nf1020d758f414f35a0023079b24c086f
40 Nf1652f53c9764325a511ea1c00fe3e06
41 sg:journal.1129956
42 schema:name Freed by interaction kinetic states in the Harper model
43 schema:pagination 337
44 schema:productId N1eb8506cd049403289c5ba88e7bb8961
45 N46d7611a1de14486bedbcb6a1a18ce91
46 Nd94ab767c2614c5c898a363d1103e54c
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020159028
48 https://doi.org/10.1140/epjb/e2015-60733-9
49 schema:sdDatePublished 2019-04-10T19:06
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher Nf658642898624f80bbdb64a8071841d0
52 schema:url http://link.springer.com/10.1140/epjb/e2015-60733-9
53 sgo:license sg:explorer/license/
54 sgo:sdDataset articles
55 rdf:type schema:ScholarlyArticle
56 N1eb8506cd049403289c5ba88e7bb8961 schema:name readcube_id
57 schema:value 600d03f49f967a9eb27860617d84d4a4c70a30cea3a79f4653f523a7ce3067e0
58 rdf:type schema:PropertyValue
59 N29a74b9c85124e1f92898ee7d937bb0c rdf:first sg:person.013240507225.20
60 rdf:rest Nb54b715446434794822ca580a51cfd40
61 N46d7611a1de14486bedbcb6a1a18ce91 schema:name dimensions_id
62 schema:value pub.1020159028
63 rdf:type schema:PropertyValue
64 Nb54b715446434794822ca580a51cfd40 rdf:first sg:person.01047545554.02
65 rdf:rest rdf:nil
66 Nd94ab767c2614c5c898a363d1103e54c schema:name doi
67 schema:value 10.1140/epjb/e2015-60733-9
68 rdf:type schema:PropertyValue
69 Nf1020d758f414f35a0023079b24c086f schema:volumeNumber 88
70 rdf:type schema:PublicationVolume
71 Nf1652f53c9764325a511ea1c00fe3e06 schema:issueNumber 12
72 rdf:type schema:PublicationIssue
73 Nf658642898624f80bbdb64a8071841d0 schema:name Springer Nature - SN SciGraph project
74 rdf:type schema:Organization
75 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
76 schema:name Physical Sciences
77 rdf:type schema:DefinedTerm
78 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
79 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
80 rdf:type schema:DefinedTerm
81 sg:journal.1129956 schema:issn 1155-4304
82 1286-4862
83 schema:name The European Physical Journal B
84 rdf:type schema:Periodical
85 sg:person.01047545554.02 schema:affiliation https://www.grid.ac/institutes/grid.11417.32
86 schema:familyName Shepelyansky
87 schema:givenName Dima L.
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01047545554.02
89 rdf:type schema:Person
90 sg:person.013240507225.20 schema:affiliation https://www.grid.ac/institutes/grid.11417.32
91 schema:familyName Frahm
92 schema:givenName Klaus M.
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013240507225.20
94 rdf:type schema:Person
95 sg:pub.10.1007/s002220100196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053629111
96 https://doi.org/10.1007/s002220100196
97 rdf:type schema:CreativeWork
98 sg:pub.10.1007/s100510050866 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026030659
99 https://doi.org/10.1007/s100510050866
100 rdf:type schema:CreativeWork
101 sg:pub.10.1038/nature07071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048840212
102 https://doi.org/10.1038/nature07071
103 rdf:type schema:CreativeWork
104 sg:pub.10.1038/nature14165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022690485
105 https://doi.org/10.1038/nature14165
106 rdf:type schema:CreativeWork
107 sg:pub.10.1038/nphys2498 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002347375
108 https://doi.org/10.1038/nphys2498
109 rdf:type schema:CreativeWork
110 sg:pub.10.1140/epjb/e2010-00190-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002035374
111 https://doi.org/10.1140/epjb/e2010-00190-6
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/0370-1573(85)90088-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050915108
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/s0167-2789(98)00230-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002378300
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1088/0370-1298/68/10/304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059091325
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1090/qam/42792 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059348552
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1103/physrevb.14.2239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060521465
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1103/physrevb.50.1420 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060572906
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1103/physrevb.54.14896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029972508
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1103/physrevlett.106.230403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032357119
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1103/physrevlett.109.155306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021126638
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1103/physrevlett.66.1651 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060802226
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1103/physrevlett.67.1377 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060803064
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1103/physrevlett.73.2607 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060809857
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1103/physrevlett.75.1598 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053524770
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1103/physrevlett.76.491 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012123011
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1103/physrevlett.77.4752 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007442670
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1103/physrevlett.87.066601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008908584
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1126/science.aaa7432 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062665386
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1209/0295-5075/30/7/005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064230571
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1209/0295-5075/31/3/008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023429946
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1209/0295-5075/98/66002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007814414
152 rdf:type schema:CreativeWork
153 https://doi.org/10.2307/121066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069397527
154 rdf:type schema:CreativeWork
155 https://doi.org/10.4249/scholarpedia.10462 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072400898
156 rdf:type schema:CreativeWork
157 https://doi.org/10.4249/scholarpedia.3550 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072401415
158 rdf:type schema:CreativeWork
159 https://www.grid.ac/institutes/grid.11417.32 schema:alternateName University of Toulouse
160 schema:name Laboratoire de Physique Théorique du CNRS, IRSAMC, Université de Toulouse, 31062, Toulouse, UPS, France
161 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...