Effect of incommensurate potential on the resonant tunneling through Majorana bound states on the topological superconductor chains View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-07-28

AUTHORS

Pei Wang, Shu Chen, Gao Xianlong

ABSTRACT

We study the transport through the Kitaev chain with incommensurate potentials coupled to two normal leads by the numerical operator method. We find a quantized linear conductance of e2/h, which is independent to the disorder strength and the gate voltage in a wide range, signaling the Majorana bound states. While the incommensurate potential suppresses the current at finite voltage bias, and then narrows the linear response regime of the I-V curve which exhibits two plateaus corresponding to the superconducting gap and the band edge, respectively. The linear conductance abruptly drops to zero as the disorder strength reaches the critical value 2gs + 2Δ with Δ the p-wave pairing amplitude and gs the hopping between neighbor sites, corresponding to the transition from the topological superconducting phase to the Anderson localized phase. Changing the gate voltage also causes an abrupt drop of the linear conductance by driving the chain into the topologically trivial superconducting phase, whose I-V curve exhibits an exponential shape. More... »

PAGES

164

Identifiers

URI

http://scigraph.springernature.com/pub.10.1140/epjb/e2014-50216-0

DOI

http://dx.doi.org/10.1140/epjb/e2014-50216-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1033195851


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Applied Physics, Zhejiang University of Technology, 310058, Hangzhou, P.R. China", 
          "id": "http://www.grid.ac/institutes/grid.469325.f", 
          "name": [
            "Institute of Applied Physics, Zhejiang University of Technology, 310058, Hangzhou, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Pei", 
        "id": "sg:person.0614252515.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0614252515.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, P.R. China", 
          "id": "http://www.grid.ac/institutes/grid.458438.6", 
          "name": [
            "Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Shu", 
        "id": "sg:person.01354363535.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354363535.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, Zhejiang Normal University, 321004, Jinhua, P.R. China", 
          "id": "http://www.grid.ac/institutes/grid.453534.0", 
          "name": [
            "Department of Physics, Zhejiang Normal University, 321004, Jinhua, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xianlong", 
        "givenName": "Gao", 
        "id": "sg:person.012162071563.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012162071563.16"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1140/epjb/e2013-40702-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034240150", 
          "https://doi.org/10.1140/epjb/e2013-40702-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2013.267", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051021127", 
          "https://doi.org/10.1038/nnano.2013.267"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys2479", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010713935", 
          "https://doi.org/10.1038/nphys2479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048840212", 
          "https://doi.org/10.1038/nature07071"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-07-28", 
    "datePublishedReg": "2014-07-28", 
    "description": "We study the transport through the Kitaev chain with incommensurate potentials coupled to two normal leads by the numerical operator method. We find a quantized linear conductance of e2/h, which is independent to the disorder strength and the gate voltage in a wide range, signaling the Majorana bound states. While the incommensurate potential suppresses the current at finite voltage bias, and then narrows the linear response regime of the I-V curve which exhibits two plateaus corresponding to the superconducting gap and the band edge, respectively. The linear conductance abruptly drops to zero as the disorder strength reaches the critical value 2gs + 2\u0394 with \u0394 the p-wave pairing amplitude and gs the hopping between neighbor sites, corresponding to the transition from the topological superconducting phase to the Anderson localized phase. Changing the gate voltage also causes an abrupt drop of the linear conductance by driving the chain into the topologically trivial superconducting phase, whose I-V curve exhibits an exponential shape.", 
    "genre": "article", 
    "id": "sg:pub.10.1140/epjb/e2014-50216-0", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1129956", 
        "issn": [
          "1155-4304", 
          "1286-4862"
        ], 
        "name": "The European Physical Journal B", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "87"
      }
    ], 
    "keywords": [
      "gate voltage", 
      "superconducting phase", 
      "topological superconducting phase", 
      "strength", 
      "voltage", 
      "voltage bias", 
      "response regime", 
      "band edge", 
      "abrupt drop", 
      "trivial superconducting phase", 
      "incommensurate potential", 
      "wide range", 
      "current", 
      "linear response regime", 
      "waves", 
      "phase", 
      "drop", 
      "resonant tunneling", 
      "transport", 
      "potential", 
      "method", 
      "conductance", 
      "range", 
      "finite voltage bias", 
      "regime", 
      "curves", 
      "edge", 
      "amplitude", 
      "hopping", 
      "neighbor sites", 
      "exponential shape", 
      "shape", 
      "tunneling", 
      "chain", 
      "normal leads", 
      "lead", 
      "operator method", 
      "e2/h", 
      "disorder strength", 
      "Majorana", 
      "state", 
      "bias", 
      "gap", 
      "transition", 
      "effect", 
      "sites", 
      "Kitaev chain", 
      "linear conductance", 
      "Anderson", 
      "numerical operator method", 
      "quantized linear conductance", 
      "critical value 2gs", 
      "value 2gs", 
      "topological superconductor chains", 
      "superconductor chains"
    ], 
    "name": "Effect of incommensurate potential on the resonant tunneling through Majorana bound states on the topological superconductor chains", 
    "pagination": "164", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1033195851"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1140/epjb/e2014-50216-0"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1140/epjb/e2014-50216-0", 
      "https://app.dimensions.ai/details/publication/pub.1033195851"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_637.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1140/epjb/e2014-50216-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2014-50216-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2014-50216-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2014-50216-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2014-50216-0'


 

This table displays all metadata directly associated to this object as RDF triples.

149 TRIPLES      22 PREDICATES      84 URIs      72 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1140/epjb/e2014-50216-0 schema:about anzsrc-for:01
2 anzsrc-for:02
3 schema:author N726c5e1d259c4e0398c5155b89d1d3e8
4 schema:citation sg:pub.10.1038/nature07071
5 sg:pub.10.1038/nnano.2013.267
6 sg:pub.10.1038/nphys2479
7 sg:pub.10.1140/epjb/e2013-40702-2
8 schema:datePublished 2014-07-28
9 schema:datePublishedReg 2014-07-28
10 schema:description We study the transport through the Kitaev chain with incommensurate potentials coupled to two normal leads by the numerical operator method. We find a quantized linear conductance of e2/h, which is independent to the disorder strength and the gate voltage in a wide range, signaling the Majorana bound states. While the incommensurate potential suppresses the current at finite voltage bias, and then narrows the linear response regime of the I-V curve which exhibits two plateaus corresponding to the superconducting gap and the band edge, respectively. The linear conductance abruptly drops to zero as the disorder strength reaches the critical value 2gs + 2Δ with Δ the p-wave pairing amplitude and gs the hopping between neighbor sites, corresponding to the transition from the topological superconducting phase to the Anderson localized phase. Changing the gate voltage also causes an abrupt drop of the linear conductance by driving the chain into the topologically trivial superconducting phase, whose I-V curve exhibits an exponential shape.
11 schema:genre article
12 schema:inLanguage en
13 schema:isAccessibleForFree true
14 schema:isPartOf N4b635cab80ec4b4fb242f06455fa721f
15 N66322c5e38ed4a8ba674b625c4e6e1a6
16 sg:journal.1129956
17 schema:keywords Anderson
18 Kitaev chain
19 Majorana
20 abrupt drop
21 amplitude
22 band edge
23 bias
24 chain
25 conductance
26 critical value 2gs
27 current
28 curves
29 disorder strength
30 drop
31 e2/h
32 edge
33 effect
34 exponential shape
35 finite voltage bias
36 gap
37 gate voltage
38 hopping
39 incommensurate potential
40 lead
41 linear conductance
42 linear response regime
43 method
44 neighbor sites
45 normal leads
46 numerical operator method
47 operator method
48 phase
49 potential
50 quantized linear conductance
51 range
52 regime
53 resonant tunneling
54 response regime
55 shape
56 sites
57 state
58 strength
59 superconducting phase
60 superconductor chains
61 topological superconducting phase
62 topological superconductor chains
63 transition
64 transport
65 trivial superconducting phase
66 tunneling
67 value 2gs
68 voltage
69 voltage bias
70 waves
71 wide range
72 schema:name Effect of incommensurate potential on the resonant tunneling through Majorana bound states on the topological superconductor chains
73 schema:pagination 164
74 schema:productId Nc995b64649bc451bb1ed08682fd8d30b
75 Ncd0f80e1782d4166a59be06afbe5499d
76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033195851
77 https://doi.org/10.1140/epjb/e2014-50216-0
78 schema:sdDatePublished 2022-01-01T18:34
79 schema:sdLicense https://scigraph.springernature.com/explorer/license/
80 schema:sdPublisher Ndcb3bafbf9734d21b238e152b713d6ea
81 schema:url https://doi.org/10.1140/epjb/e2014-50216-0
82 sgo:license sg:explorer/license/
83 sgo:sdDataset articles
84 rdf:type schema:ScholarlyArticle
85 N01eec1e26fea48789a646899b78aa379 rdf:first sg:person.012162071563.16
86 rdf:rest rdf:nil
87 N4b635cab80ec4b4fb242f06455fa721f schema:issueNumber 7
88 rdf:type schema:PublicationIssue
89 N66322c5e38ed4a8ba674b625c4e6e1a6 schema:volumeNumber 87
90 rdf:type schema:PublicationVolume
91 N726c5e1d259c4e0398c5155b89d1d3e8 rdf:first sg:person.0614252515.34
92 rdf:rest Nd7a714b43c1f46e5b41edb09ec076e9f
93 Nc995b64649bc451bb1ed08682fd8d30b schema:name doi
94 schema:value 10.1140/epjb/e2014-50216-0
95 rdf:type schema:PropertyValue
96 Ncd0f80e1782d4166a59be06afbe5499d schema:name dimensions_id
97 schema:value pub.1033195851
98 rdf:type schema:PropertyValue
99 Nd7a714b43c1f46e5b41edb09ec076e9f rdf:first sg:person.01354363535.00
100 rdf:rest N01eec1e26fea48789a646899b78aa379
101 Ndcb3bafbf9734d21b238e152b713d6ea schema:name Springer Nature - SN SciGraph project
102 rdf:type schema:Organization
103 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
104 schema:name Mathematical Sciences
105 rdf:type schema:DefinedTerm
106 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
107 schema:name Physical Sciences
108 rdf:type schema:DefinedTerm
109 sg:journal.1129956 schema:issn 1155-4304
110 1286-4862
111 schema:name The European Physical Journal B
112 schema:publisher Springer Nature
113 rdf:type schema:Periodical
114 sg:person.012162071563.16 schema:affiliation grid-institutes:grid.453534.0
115 schema:familyName Xianlong
116 schema:givenName Gao
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012162071563.16
118 rdf:type schema:Person
119 sg:person.01354363535.00 schema:affiliation grid-institutes:grid.458438.6
120 schema:familyName Chen
121 schema:givenName Shu
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354363535.00
123 rdf:type schema:Person
124 sg:person.0614252515.34 schema:affiliation grid-institutes:grid.469325.f
125 schema:familyName Wang
126 schema:givenName Pei
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0614252515.34
128 rdf:type schema:Person
129 sg:pub.10.1038/nature07071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048840212
130 https://doi.org/10.1038/nature07071
131 rdf:type schema:CreativeWork
132 sg:pub.10.1038/nnano.2013.267 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051021127
133 https://doi.org/10.1038/nnano.2013.267
134 rdf:type schema:CreativeWork
135 sg:pub.10.1038/nphys2479 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010713935
136 https://doi.org/10.1038/nphys2479
137 rdf:type schema:CreativeWork
138 sg:pub.10.1140/epjb/e2013-40702-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034240150
139 https://doi.org/10.1140/epjb/e2013-40702-2
140 rdf:type schema:CreativeWork
141 grid-institutes:grid.453534.0 schema:alternateName Department of Physics, Zhejiang Normal University, 321004, Jinhua, P.R. China
142 schema:name Department of Physics, Zhejiang Normal University, 321004, Jinhua, P.R. China
143 rdf:type schema:Organization
144 grid-institutes:grid.458438.6 schema:alternateName Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, P.R. China
145 schema:name Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, P.R. China
146 rdf:type schema:Organization
147 grid-institutes:grid.469325.f schema:alternateName Institute of Applied Physics, Zhejiang University of Technology, 310058, Hangzhou, P.R. China
148 schema:name Institute of Applied Physics, Zhejiang University of Technology, 310058, Hangzhou, P.R. China
149 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...