Non-anomalous diffusion is not always Gaussian View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-05

AUTHORS

Giuseppe Forte, Fabio Cecconi, Angelo Vulpiani

ABSTRACT

Through the analysis of unbiased random walks on fractal trees and continuous time random walks, we show that even if a process is characterized by a mean square displacement (MSD) growing linearly with time (standard behaviour) its diffusion properties can be not trivial. In particular, we show that the following scenarios are consistent with a linear increase of MSD with time: (i) the high-order moments, ⟨x(t)q⟩ for q > 2 and the probability density of the process exhibit multiscaling; (ii) the random walk on certain fractal graphs, with non integer spectral dimension, can display a fully standard diffusion; (iii) positive order moments satisfying standard scaling does not imply an exact scaling property of the probability density. More... »

PAGES

102

References to SciGraph publications

  • 2000-12. Simple stochastic models showing strong anomalous diffusion in THE EUROPEAN PHYSICAL JOURNAL B
  • 2012-06. When Brownian diffusion is not Gaussian in NATURE MATERIALS
  • 1982-12. Random walks on the Bethe lattice in JOURNAL OF STATISTICAL PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1140/epjb/e2014-40956-0

    DOI

    http://dx.doi.org/10.1140/epjb/e2014-40956-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1000978503


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Statistics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Sapienza University of Rome", 
              "id": "https://www.grid.ac/institutes/grid.7841.a", 
              "name": [
                "Dipartimento di Fisica, Universit\u00e0 di Roma \u201cSapienza\u201d, P.le A. Moro 2, 00185, Roma, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Forte", 
            "givenName": "Giuseppe", 
            "id": "sg:person.01126637461.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126637461.16"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for Complex Systems", 
              "id": "https://www.grid.ac/institutes/grid.472642.1", 
              "name": [
                "CNR-Istituto dei Sistemi Complessi (ISC), UOS \u201cSapienza\u201d, P.le A. Moro 2, 00185, Roma, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cecconi", 
            "givenName": "Fabio", 
            "id": "sg:person.0623717055.78", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623717055.78"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for Complex Systems", 
              "id": "https://www.grid.ac/institutes/grid.472642.1", 
              "name": [
                "Dipartimento di Fisica, Universit\u00e0 di Roma \u201cSapienza\u201d, P.le A. Moro 2, 00185, Roma, Italy", 
                "CNR-Istituto dei Sistemi Complessi (ISC), UOS \u201cSapienza\u201d, P.le A. Moro 2, 00185, Roma, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Vulpiani", 
            "givenName": "Angelo", 
            "id": "sg:person.01352261626.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01352261626.07"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01011791", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000991842", 
              "https://doi.org/10.1007/bf01011791"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-1573(90)90099-n", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001884293"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-1573(90)90099-n", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001884293"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1146/annurev.biophys.26.1.373", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002517317"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/andp.200410132", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005478470"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat3308", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008831181", 
              "https://doi.org/10.1038/nmat3308"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/andp.19053220806", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011194729"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.80.061122", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015957648"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.80.061122", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015957648"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.61.r5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016679854"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.61.r5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016679854"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s100510070032", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020694755", 
              "https://doi.org/10.1007/s100510070032"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0167-2789(99)00031-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024437561"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0034-4885/76/4/046602", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029878865"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0370-1573(00)00070-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042976136"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c2sm25701g", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049051072"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.63.011104", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051792330"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.63.011104", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051792330"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1051/jphyslet:019820043017062500", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057009413"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1704269", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057774210"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/pt.3.1677", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058141438"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.47.851", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060715458"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.47.851", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060715458"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.49.r1785", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060716770"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.49.r1785", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060716770"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.51.2865", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060717672"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.51.2865", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060717672"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.100.250602", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060753647"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.100.250602", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060753647"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.67.208", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060803289"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.67.208", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060803289"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.73.2946", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060809956"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.73.2946", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060809956"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.79.857", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060816572"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.79.857", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060816572"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1209/0295-5075/14/5/009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064228325"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1101892616", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2014-05", 
        "datePublishedReg": "2014-05-01", 
        "description": "Through the analysis of unbiased random walks on fractal trees and continuous time random walks, we show that even if a process is characterized by a mean square displacement (MSD) growing linearly with time (standard behaviour) its diffusion properties can be not trivial. In particular, we show that the following scenarios are consistent with a linear increase of MSD with time: (i) the high-order moments, \u27e8x(t)q\u27e9 for q > 2 and the probability density of the process exhibit multiscaling; (ii) the random walk on certain fractal graphs, with non integer spectral dimension, can display a fully standard diffusion; (iii) positive order moments satisfying standard scaling does not imply an exact scaling property of the probability density.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1140/epjb/e2014-40956-0", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1129956", 
            "issn": [
              "1155-4304", 
              "1286-4862"
            ], 
            "name": "The European Physical Journal B", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "5", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "87"
          }
        ], 
        "name": "Non-anomalous diffusion is not always Gaussian", 
        "pagination": "102", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "04a97c6fa69f72a665c934183ebee1752ff148ac5e07d28b0d10d6db1c15853d"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1140/epjb/e2014-40956-0"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1000978503"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1140/epjb/e2014-40956-0", 
          "https://app.dimensions.ai/details/publication/pub.1000978503"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T02:25", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000579.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1140/epjb/e2014-40956-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2014-40956-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2014-40956-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2014-40956-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1140/epjb/e2014-40956-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    159 TRIPLES      21 PREDICATES      53 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1140/epjb/e2014-40956-0 schema:about anzsrc-for:01
    2 anzsrc-for:0104
    3 schema:author N89525a0754544b39ac071dbbe0916a66
    4 schema:citation sg:pub.10.1007/bf01011791
    5 sg:pub.10.1007/s100510070032
    6 sg:pub.10.1038/nmat3308
    7 https://app.dimensions.ai/details/publication/pub.1101892616
    8 https://doi.org/10.1002/andp.19053220806
    9 https://doi.org/10.1002/andp.200410132
    10 https://doi.org/10.1016/0370-1573(90)90099-n
    11 https://doi.org/10.1016/s0167-2789(99)00031-7
    12 https://doi.org/10.1016/s0370-1573(00)00070-3
    13 https://doi.org/10.1039/c2sm25701g
    14 https://doi.org/10.1051/jphyslet:019820043017062500
    15 https://doi.org/10.1063/1.1704269
    16 https://doi.org/10.1063/pt.3.1677
    17 https://doi.org/10.1088/0034-4885/76/4/046602
    18 https://doi.org/10.1103/physreve.47.851
    19 https://doi.org/10.1103/physreve.49.r1785
    20 https://doi.org/10.1103/physreve.51.2865
    21 https://doi.org/10.1103/physreve.61.r5
    22 https://doi.org/10.1103/physreve.63.011104
    23 https://doi.org/10.1103/physreve.80.061122
    24 https://doi.org/10.1103/physrevlett.100.250602
    25 https://doi.org/10.1103/physrevlett.67.208
    26 https://doi.org/10.1103/physrevlett.73.2946
    27 https://doi.org/10.1103/physrevlett.79.857
    28 https://doi.org/10.1146/annurev.biophys.26.1.373
    29 https://doi.org/10.1209/0295-5075/14/5/009
    30 schema:datePublished 2014-05
    31 schema:datePublishedReg 2014-05-01
    32 schema:description Through the analysis of unbiased random walks on fractal trees and continuous time random walks, we show that even if a process is characterized by a mean square displacement (MSD) growing linearly with time (standard behaviour) its diffusion properties can be not trivial. In particular, we show that the following scenarios are consistent with a linear increase of MSD with time: (i) the high-order moments, ⟨x(t)q⟩ for q > 2 and the probability density of the process exhibit multiscaling; (ii) the random walk on certain fractal graphs, with non integer spectral dimension, can display a fully standard diffusion; (iii) positive order moments satisfying standard scaling does not imply an exact scaling property of the probability density.
    33 schema:genre research_article
    34 schema:inLanguage en
    35 schema:isAccessibleForFree true
    36 schema:isPartOf N8e8a9151d51641d18da4cf5d82d6cf99
    37 Ncafcb990c1584ca5a1865d3977333dc2
    38 sg:journal.1129956
    39 schema:name Non-anomalous diffusion is not always Gaussian
    40 schema:pagination 102
    41 schema:productId N3912665fa6d642c69368d46116ea8879
    42 N47203e120aa24fc59dd675563003522b
    43 N5344dba55a9a49109f7c3fa7e2161b6e
    44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000978503
    45 https://doi.org/10.1140/epjb/e2014-40956-0
    46 schema:sdDatePublished 2019-04-11T02:25
    47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    48 schema:sdPublisher N315e3ed3993a450eb880d70015e030b6
    49 schema:url http://link.springer.com/10.1140/epjb/e2014-40956-0
    50 sgo:license sg:explorer/license/
    51 sgo:sdDataset articles
    52 rdf:type schema:ScholarlyArticle
    53 N315e3ed3993a450eb880d70015e030b6 schema:name Springer Nature - SN SciGraph project
    54 rdf:type schema:Organization
    55 N3912665fa6d642c69368d46116ea8879 schema:name doi
    56 schema:value 10.1140/epjb/e2014-40956-0
    57 rdf:type schema:PropertyValue
    58 N47203e120aa24fc59dd675563003522b schema:name dimensions_id
    59 schema:value pub.1000978503
    60 rdf:type schema:PropertyValue
    61 N5344dba55a9a49109f7c3fa7e2161b6e schema:name readcube_id
    62 schema:value 04a97c6fa69f72a665c934183ebee1752ff148ac5e07d28b0d10d6db1c15853d
    63 rdf:type schema:PropertyValue
    64 N89525a0754544b39ac071dbbe0916a66 rdf:first sg:person.01126637461.16
    65 rdf:rest Nd36dfd43568346cd965ad3d490a52493
    66 N8e8a9151d51641d18da4cf5d82d6cf99 schema:issueNumber 5
    67 rdf:type schema:PublicationIssue
    68 Ncafcb990c1584ca5a1865d3977333dc2 schema:volumeNumber 87
    69 rdf:type schema:PublicationVolume
    70 Ncd285cff09af4dea8b57f91884c2e312 rdf:first sg:person.01352261626.07
    71 rdf:rest rdf:nil
    72 Nd36dfd43568346cd965ad3d490a52493 rdf:first sg:person.0623717055.78
    73 rdf:rest Ncd285cff09af4dea8b57f91884c2e312
    74 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    75 schema:name Mathematical Sciences
    76 rdf:type schema:DefinedTerm
    77 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
    78 schema:name Statistics
    79 rdf:type schema:DefinedTerm
    80 sg:journal.1129956 schema:issn 1155-4304
    81 1286-4862
    82 schema:name The European Physical Journal B
    83 rdf:type schema:Periodical
    84 sg:person.01126637461.16 schema:affiliation https://www.grid.ac/institutes/grid.7841.a
    85 schema:familyName Forte
    86 schema:givenName Giuseppe
    87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126637461.16
    88 rdf:type schema:Person
    89 sg:person.01352261626.07 schema:affiliation https://www.grid.ac/institutes/grid.472642.1
    90 schema:familyName Vulpiani
    91 schema:givenName Angelo
    92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01352261626.07
    93 rdf:type schema:Person
    94 sg:person.0623717055.78 schema:affiliation https://www.grid.ac/institutes/grid.472642.1
    95 schema:familyName Cecconi
    96 schema:givenName Fabio
    97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623717055.78
    98 rdf:type schema:Person
    99 sg:pub.10.1007/bf01011791 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000991842
    100 https://doi.org/10.1007/bf01011791
    101 rdf:type schema:CreativeWork
    102 sg:pub.10.1007/s100510070032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020694755
    103 https://doi.org/10.1007/s100510070032
    104 rdf:type schema:CreativeWork
    105 sg:pub.10.1038/nmat3308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008831181
    106 https://doi.org/10.1038/nmat3308
    107 rdf:type schema:CreativeWork
    108 https://app.dimensions.ai/details/publication/pub.1101892616 schema:CreativeWork
    109 https://doi.org/10.1002/andp.19053220806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011194729
    110 rdf:type schema:CreativeWork
    111 https://doi.org/10.1002/andp.200410132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005478470
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.1016/0370-1573(90)90099-n schema:sameAs https://app.dimensions.ai/details/publication/pub.1001884293
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1016/s0167-2789(99)00031-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024437561
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1016/s0370-1573(00)00070-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042976136
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1039/c2sm25701g schema:sameAs https://app.dimensions.ai/details/publication/pub.1049051072
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1051/jphyslet:019820043017062500 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057009413
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1063/1.1704269 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057774210
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1063/pt.3.1677 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058141438
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1088/0034-4885/76/4/046602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029878865
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1103/physreve.47.851 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060715458
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1103/physreve.49.r1785 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060716770
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1103/physreve.51.2865 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060717672
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1103/physreve.61.r5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016679854
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1103/physreve.63.011104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051792330
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1103/physreve.80.061122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015957648
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1103/physrevlett.100.250602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060753647
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1103/physrevlett.67.208 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060803289
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1103/physrevlett.73.2946 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060809956
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1103/physrevlett.79.857 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060816572
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1146/annurev.biophys.26.1.373 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002517317
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1209/0295-5075/14/5/009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064228325
    152 rdf:type schema:CreativeWork
    153 https://www.grid.ac/institutes/grid.472642.1 schema:alternateName Institute for Complex Systems
    154 schema:name CNR-Istituto dei Sistemi Complessi (ISC), UOS “Sapienza”, P.le A. Moro 2, 00185, Roma, Italy
    155 Dipartimento di Fisica, Università di Roma “Sapienza”, P.le A. Moro 2, 00185, Roma, Italy
    156 rdf:type schema:Organization
    157 https://www.grid.ac/institutes/grid.7841.a schema:alternateName Sapienza University of Rome
    158 schema:name Dipartimento di Fisica, Università di Roma “Sapienza”, P.le A. Moro 2, 00185, Roma, Italy
    159 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...